定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標系中四點.
(1)根據(jù)上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是 ;當m=5,n=2時,如圖2,線段BC與線段OA的距離為 ;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
【考點】圓的綜合題;勾股定理;相似三角形的判定與性質(zhì).
【專題】代數(shù)幾何綜合題;壓軸題.
【分析】(1)理解新定義,按照新定義的要求求出兩個距離值;
(2)如答圖2所示,當點B落在⊙A上時,m的取值范圍為2≤m≤6:
當4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當2≤m<4時,作BN⊥x軸于點N,線段BC與線段OA的距離等于BN長;
(3)①在準確理解點M運動軌跡的基礎(chǔ)上,畫出草圖,如答圖3所示.由圖形可以直觀求出封閉圖形的周長;
②如答圖4所示,符合題意的相似三角形有三個,需要進行分類討論,分別利用點的坐標關(guān)系以及相似三角形比例線段關(guān)系求出m的值.
【解答】解:(1)當m=2,n=2時,
如題圖1,線段BC與線段OA的距離(即線段BN的長)=2;
當m=5,n=2時,
B點坐標為(5,2),線段BC與線段OA的距離,即為線段AB的長,
如答圖1,過點B作BN⊥x軸于點N,則AN=1,BN=2,
在Rt△ABN中,由勾股定理得:AB===.
(2)如答圖2所示,當點B落在⊙A上時,m的取值范圍為2≤m≤6:
當4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當2≤m<4時,作BN⊥x軸于點N,線段BC與線段OA的距離等于BN長,
ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:
∴d===.
(3)①依題意畫出圖形,點M的運動軌跡如答圖3中粗體實線所示:
由圖可見,封閉圖形由上下兩段長度為8的線段,以及左右兩側(cè)半徑為2的半圓所組成,
其周長為:2×8+2×π×2=16+4π,
∴點M隨線段BC運動所圍成的封閉圖形的周長為:16+4π.
②結(jié)論:存在.
∵m≥0,n≥0,∴點M位于第一象限.
∵A(4,0),D(0,2),∴OA=2OD.
如答圖4所示,相似三角形有三種情形:
(I)△AM1H1,此時點M縱坐標為2,點H在A點左側(cè).
如圖,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,
由相似關(guān)系可知,M1H1=2AH1,即2=2(2﹣m),
∴m=1;
(II)△AM2H2,此時點M縱坐標為2,點H在A點右側(cè).
如圖,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,
由相似關(guān)系可知,M2H2=2AH2,即2=2(m﹣2),
∴m=3;
(III)△AM3H3,此時點B落在⊙A上.
如圖,OH3=m+2,AH3=OH3﹣OA=m﹣2,
過點B作BN⊥x軸于點N,則BN=M3H3=n,AN=m﹣4,
由相似關(guān)系可知,AH3=2M3H3,即m﹣2=2n (1)
在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2 (2)
由(1)、(2)式解得:m1=,m2=2,
當m=2時,點M與點A橫坐標相同,點H與點A重合,故舍去,
∴m=.
綜上所述,存在m的值使以A、M、H為頂點的三角形與△AOD相似,m的取值為:1、3或.
【點評】本題是以圓為基礎(chǔ)的運動型壓軸題,綜合考查了圓的相關(guān)性質(zhì)、相似三角形、點的坐標、勾股定理、解方程等重要知識點,難度較大.本題涉及動線與動點,運動過程比較復雜,準確理解運動過程是解決本題的關(guān)鍵.第(3)①問中,關(guān)鍵是畫出點M運動軌跡的圖形,結(jié)合圖形求解一目了然;第(3)②問中,注意分類討論思想的運用,避免漏解.
科目:初中數(shù)學 來源: 題型:
在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點D為直線BC上的動點,過點D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當點D在線段BC上時,如圖1所示,①∠EDC= 22.5 °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當點D運動到CB延長線上時,請你畫出圖形,并證明此時DF與EC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(1)拋物線m1:y1=a1x2+b1x+c1中,函數(shù)y1與自變量x之間的部分對應值如表:
x | … | ﹣2 | ﹣1 | 1 | 2 | 4 | 5 | … |
y1 | … | ﹣5 | 0 | 4 | 3 | ﹣5 | ﹣12 | … |
設(shè)拋物線m1的頂點為P,與y軸的交點為C,則點P的坐標為 ,點C的坐標為 .
(2)將設(shè)拋物線m1沿x軸翻折,得到拋物線m2:y2=a2x2+b2x+c2,則當x=﹣3時,y2= .
(3)在(1)的條件下,將拋物線m1沿水平方向平移,得到拋物線m3.設(shè)拋物線m1與x軸交于A,B兩點(點A在點B的左側(cè)),拋物線m3與x軸交于M,N兩點(點M在點N的左側(cè)).過點C作平行于x軸的直線,交拋物線m3于點K.問:是否存在以A,C,K,M為頂點的四邊形是菱形的情形?若存在,請求出點K的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知二次函數(shù)y=-x2+2x+3.
(1)寫出這個二次函數(shù)的開口方向、對稱軸、頂點坐標和最大值;
(2)求出這個拋物線與坐標軸的交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com