【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
【答案】(1)作圖見解析;(2)證明見解析.
【解析】(1)①以B為圓心,任意長為半徑畫弧,交AB、BC于F、N,再以F、N為圓心,大于FN長為半徑畫弧,兩弧交于點M,過B、M作射線,交AC于D,線段BD就是∠B的平分線。
②分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于X、Y,過X、Y作直線與AB
交于點E,點E就是AB的中點.
(2)首先根據(jù)角平分線的性質(zhì)可得∠ABD的度數(shù),從而得到∠ABD=∠A,根據(jù)等角對等邊可得AD=BD,再加上條件AE=BE,即可利用SAS證明△ADE≌△BDE.
解:(1)作圖如下:
(2)證明:∵∠ABD=×60°=30°,∠A=30°,
∴∠ABD=∠A。∴AD=BD.
又∵AE=BE,
∴△ADE≌△BDE(SAS).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空:
(1)過點________和點_______作直線;
(2)延長線段________到_________,且使________=_________.
(3)過點_________作直線_______的垂線;
(4)作射線_______,使_____平分∠________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BFDE是菱形,且OE=AE,則邊BC的長為( )
A.2
B.3
C.
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一節(jié)”期間,小明一家自駕游去了離家240千米的某地,如圖是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.
(1)求出y(千米)與x(小時)之間的函數(shù)表達式;
(2)他們出發(fā)2小時時,離目的地還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=1,連接AC,以AC為邊作第一個正方形ACC1D1 , 連接AC1 , 以AC1為邊作第二個正方形AC1C2D2 , 則第10個正方形邊長為( )
A.8
B.16
C.32
D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)騎自行車去新華書店,如圖表示他離家的距離y(千米)與所用的時間s(小時)之間關(guān)系的函數(shù)圖象
(1)根據(jù)圖象回答:小明家離新華書店千米,小明用了小時到達新華書店;
(2)小明從家出發(fā)兩個半小時走了千米;
(3)直線CD的函數(shù)解析式為;
(4)小明出發(fā)小時,離家12千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是5的相反數(shù),c=|2|,且a、b、c分別是點A. B.C在數(shù)軸上對應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標(biāo)出點A. B. C.
(2)若動點P從點A出發(fā)沿數(shù)軸正方向運動,動點Q同時從點B出發(fā)也沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,點Q可以追上點P?
(3)在數(shù)軸上找一點M,使點M到A. B.C三點的距離之和等于12,請直接寫出所有點M對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S3=15,則S2的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com