10.解下列分式方程.
(1)$\frac{2}{2x+1}+\frac{1}{2x+1}$=1
(2)$\frac{2}{x-1}+\frac{1}{1-x}=\frac{1}{2}$.

分析 兩分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.

解答 解:(1)去分母得:2+1=2x+1,
移項合并得:2x=2,
解得:x=1,
經(jīng)檢驗x=1是分式方程的解;
(2)去分母得:4-2=x-1,
解得:x=3,
經(jīng)檢驗x=3是分式方程的解.

點(diǎn)評 此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知一次函數(shù)圖象如圖,則它的表達(dá)式為y=2x-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,O為直線AB上一點(diǎn),OD平分∠AOC,OE平分∠COB,
①問:DO與OE有何關(guān)系?并說明你的理由.
②圖中有幾對互余的角?試寫出所有你認(rèn)為互余的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線G1:y=ax2+bx+c的頂點(diǎn)為(2,-3),且經(jīng)過點(diǎn)(4,1).
(1)求拋物線G1的解析式;
(2)將拋物線G1先向左平移3個單位,再向下平移1個單位后得到拋物線G2,且拋物線G2與x軸的負(fù)半軸相交于A點(diǎn),求A點(diǎn)的坐標(biāo);
(3)如果直線m的解析式為${y_{\;}}=\frac{1}{2}x+3$,點(diǎn)B是(2)中拋物線G2上的一個點(diǎn),且在對稱軸右側(cè)部分(含頂點(diǎn))上運(yùn)動,直線n過點(diǎn)A和點(diǎn)B.問:是否存在點(diǎn)B,使直線m、n、x軸圍成的三角形和直線m、n、y軸圍成的三角形相似?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知正方形ABCD中,點(diǎn)E在BC上,連接AE,過點(diǎn)B作BF⊥AE于點(diǎn)G,交CD于點(diǎn)F.

(1)如圖1,連接AF,若AB=4,BE=1,求AF的長;
(2)如圖2,連接BD,交AE于點(diǎn)N,連接AC,分別交BD、BF于點(diǎn)O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.“囧”像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分),設(shè)剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.
(1)用式子表示“囧”的面積S;(用含a、x、y的式子表示)
(2)當(dāng)a=7,x=π,y=2時,求S(π取3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知,在下列各圖中,點(diǎn)O為直線AB上一點(diǎn),∠AOC=60°,直角三角板的直角頂點(diǎn)放在點(diǎn)處.

(1)如圖1,三角板一邊OM在射線OB上,另一邊ON在直線AB的下方,則∠BOC的度數(shù)為120°,∠CON的度數(shù)為150°;
(2)如圖2,三角板一邊OM恰好在∠BOC的角平分線OE上,另一邊ON在直線AB的下方,此時∠BON的度數(shù)為30°;
(3)請從下列(A),(B)兩題中任選一題作答.
我選擇:A(或B).
(A)在圖2中,延長線段NO得到射線OD,如圖3,則∠AOD的度數(shù)為30°;∠DOC與∠BON的數(shù)量關(guān)系是∠DOC=∠BON(填“>”、“=”或“<”);
(B)如圖4,MN⊥AB,ON在∠AOC的內(nèi)部,若另一邊OM在直線AB的下方,則∠COM+∠AON的度數(shù)為150°;∠AOM-∠CON的度數(shù)為30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,OE為∠AOD的平分線,∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,求∠AOD的大。
解:∵∠COD=$\frac{1}{4}$∠EOC,∠COD=15°,
∴∠EOC=4∠∠COD=60°,
∴∠EOD=∠EOC-∠COD=45°,
∵OE為∠AOD的平分線,
∴∠AOD=2∠EOD=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ACE中,CA=CE,∠CAE=30°,∠CAE=30°,⊙O經(jīng)過點(diǎn)C,且圓的直徑AB在線段AE上.
(1)證明:CE是⊙O的切線;
(2)設(shè)點(diǎn)D是線段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)AB=8時,求$\frac{1}{2}$CD+OD的最小值.

查看答案和解析>>

同步練習(xí)冊答案