【題目】在第1個△ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1A2,使得A1A2=A1C;在A2C上取一點D,延長A1A2A3,使得A2A3=A2D;…,按此做法進行下去,第n個三角形的以An為頂點的內角的度數(shù)為______

【答案】n180°

【解析】

先根據(jù)等腰三角形的性質求出∠BA1A的度數(shù),再根據(jù)三角形外角的性質及等腰三角形的性質分別求出∠CA2A1,DA3A2及∠EA4A3的度數(shù),找出規(guī)律即可得出第n個三角形的以An為頂點的內角的度數(shù).

∵在ABA1,B=20°,AB=A1B,

∴∠BA1A===80°,

A1A2=A1C,BA1AA1A2C的外角,

∴∠CA2A1=BA1A=×80°=40°;

同理可得,

DA3A2=20°,EA4A3=10°,

∴第n個三角形的以An為頂點的內角的度數(shù)=(n180°.

故答案為(n180°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是△ABC外一點,連接AD、BD、CD,若∠CDB=90°,BD=3,AD= ,則AC長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:(只保留作圖痕跡)如圖,在方格紙中,有兩條線段AB、BC.利用方格紙完成以下操作:

(1)過點A作BC的平行線;

(2)過點C作AB的平行線,與(1)中的平行線交于點D;

(3)過點B作AB的垂線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富學生的課外活動,某校決定購買100個籃球和副羽毛球拍.經(jīng)調查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.

1)求每個籃球和每副羽毛球拍的價格分別是多少?

2)請用含的代數(shù)式分別表示出到甲商店和乙商店購買所花的費用;

3)請你決策:在哪家商店購買劃算?(直接寫出結論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陰影部分是邊長為a的大正方形中剪去一個邊長為b的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3種割拼方法,其中能夠驗證平方差公式的是( )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從3,0,﹣1,﹣2,﹣3這五個數(shù)中,隨機抽取一個數(shù),作為函數(shù)y=(5﹣m2)x和關于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實數(shù)根的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過點A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.
(1)當點P與點Q重合時,如圖1,寫出QE與QF的數(shù)量關系,不證明;

(2)當點P在線段AB上且不與點Q重合時,如圖2,(1)的結論是否成立?并證明;

(3)當點P在線段BA(或AB)的延長線上時,如圖3,此時(1)的結論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知格點三角形ABC(三角形的三個頂點都在小正方形的頂點上).

(1)寫出ABC的面積;

(2)畫出ABC關于y軸對稱的A1B1C1;

(3)寫出點A及其對稱點A1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;

(1)求購買一個甲種足球、一個乙種足球各需多少元;

(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?

查看答案和解析>>

同步練習冊答案