【題目】甲、乙兩車分別從相距480km的A.B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問題:
(1)乙車的速度是___千米/時(shí),t=___小時(shí);
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)直接寫出兩車相距150千米時(shí)x的取值.
【答案】(1)60;3;(2);(3),或小時(shí)
【解析】
(1)首先根據(jù)圖示,可得乙車的速度是60千米/時(shí),然后根據(jù)路程÷速度=時(shí)間,用兩地之間的距離除以乙車的速度,求出乙車到達(dá)A地用的時(shí)間是多少;最后根據(jù)路程÷時(shí)間=速度,用兩地之間的距離除以甲車往返AC兩地用的時(shí)間,求出甲車的速度,再用360除以甲車的速度,求出t的值是多少即可.
(2)根據(jù)題意,分3種情況:①當(dāng)0≤x≤3時(shí);②當(dāng)3<x≤4時(shí);③4<x≤7時(shí);分類討論,求出甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍即可.
(3)根據(jù)題意,分3種情況:①甲乙兩車相遇之前相距150千米,;②當(dāng)甲車停留在C地時(shí);③兩車都朝A地行駛時(shí),分類討論,求出甲車出發(fā)多長時(shí)間兩車相距150千米即可.
解:(1)根據(jù)圖示,可得
乙車的速度是60千米/時(shí),
甲車的速度=720÷6=120(千米/小時(shí))
∴t=360÷120=3(小時(shí)).
故答案為:60;3;
(2)①當(dāng)0≤x≤3時(shí),設(shè)y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②當(dāng)3<x≤4時(shí),y=360.
③4<x≤7時(shí),設(shè)y=k2x+b,
把(4,360)和(7,0)代入,可得,解得
∴y=﹣120x+840(4<x≤7).
綜上:
(3)①甲車朝向B地,乙車朝向A地
(480—60-150)÷(120+60)=270÷180=(小時(shí))
②當(dāng)甲車停留在C地時(shí),
甲車剛到達(dá)C地時(shí),兩車相距:(千米)
甲車在C地停留期間:兩車相距:(千米),解得:
③兩車都朝A地行駛時(shí),
則60()+180﹣120()=150,
所以,
解得
綜上,可得甲車出發(fā),或小時(shí)后兩車相距150千米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一塊長為米、寬為米的長方形空地,現(xiàn)計(jì)劃將這塊空地四周均留出2米寬修道路,中間用來綠化.
(1)求綠化的面積(用含、的代數(shù)式表示).
(2)若長方形空地的面積為576米2,周長為120米,求綠化的面積.
(3)若在圖①的綠化部分再修一條2米寬道路,如圖②,求綠化的面積(用含、的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.
(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數(shù)量的筆記本嗎?
(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數(shù)a,使得每本硬面筆記本、軟面筆記本的價(jià)格都是正整數(shù),并且小明和小麗能買到相同數(shù)量的筆記本?若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD,在AB,CD內(nèi)有一條折線EGF.
(1)如圖①,過點(diǎn)G作GH∥AB,求證:∠BEG+∠DFG=∠EGF;
(2)如圖②,已知∠BEG的平分線與∠DFG的平分線相交于點(diǎn)Q,請?zhí)骄俊?/span>EGF與∠EQF的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商場預(yù)測某品牌運(yùn)動(dòng)服能夠暢銷,就用32000元購進(jìn)了一批這種運(yùn)動(dòng)服,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種運(yùn)動(dòng)服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.
(1)該商場兩次共購進(jìn)這種運(yùn)動(dòng)服多少套?
(2)如果這兩批運(yùn)動(dòng)服每套的售價(jià)相同,且全部售完后總利潤不低于20%,那么每套售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A在x正半軸,以點(diǎn)A為圓心作⊙A,點(diǎn)M(4,4)在⊙A上,直線y=﹣x+b與圓相切于點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).
(1)直接寫出b的值和點(diǎn)B的坐標(biāo);
(2)求點(diǎn)A的坐標(biāo)和圓的半徑;
(3)若EF切⊙A于點(diǎn)F分別交AB和BC于G、E,且FE⊥BC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點(diǎn)O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,最適宜采用全面調(diào)查方式(普查)的是( )
A. 對襄陽市中學(xué)生每天課外讀書所用時(shí)間的調(diào)查
B. 對全國中學(xué)生心理健康現(xiàn)狀的調(diào)查
C. 對七年級(2)班學(xué)生米跑步成績的調(diào)查
D. 對市面某品牌中性筆筆芯使用壽命的調(diào)查
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com