點(diǎn)E,F(xiàn),M,N分別是正方形ABCD四條邊上的點(diǎn),且AE=BF=CM=DN,試判斷四邊形EFMN是什么圖形?并證明你的結(jié)論.

答案:略
解析:

四邊形EFMN為正方形,證△AEN≌△BFE≌△CMF≌△DNM,再證四邊形EFMN為菱形且∠NEF90°


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC中,AB=10.
(1)如圖①,若點(diǎn)D、E分別是AC、BC邊的中點(diǎn),求DE的長(zhǎng);
(2)如圖②,若點(diǎn)A1,A2把AC邊三等分,過(guò)A1,A2作AB邊的平行線,分別交BC邊于點(diǎn)B1,B2,求A1B1+A2B2的值;
(3)如圖③,若點(diǎn)A1,A2,…,A10把AC邊十一等分,過(guò)各點(diǎn)作AB邊的平行線,分別交BC邊于點(diǎn)B1,B2,…B10.根據(jù)你所發(fā)現(xiàn)的規(guī)律,直接寫(xiě)出A1B1+A2B2+…+A10B10的結(jié)果.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、P是⊙O外一點(diǎn),PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)C是劣弧AB上任意一點(diǎn),經(jīng)過(guò)點(diǎn)C作⊙O的切線,分別交PA、PB于點(diǎn)D、E.若PA=4,則△PDE的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過(guò)點(diǎn)P作半圓O的切線分別交過(guò)A、B兩點(diǎn)的切線于D、C,連接OC、BP,過(guò)點(diǎn)O作OM∥CD分別交BC與BP于點(diǎn)M、N.下列結(jié)論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過(guò)O、C、D三點(diǎn)的圓的切線.
其中正確的個(gè)數(shù)有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知O是∠APB內(nèi)的一點(diǎn),點(diǎn)M,N分別是O點(diǎn)關(guān)于PA,PB的對(duì)稱(chēng)點(diǎn),MN與PA,PB分別相交于點(diǎn)E,F(xiàn),已知MN=5cm,則△OEF的周長(zhǎng)
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P為∠AOB內(nèi)一點(diǎn),分別作出P點(diǎn)關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)P1,P2,連接P1P2交OA于點(diǎn)M,交OB于點(diǎn)N,P1P2=15,則△PMN的周長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案