【題目】如圖,在△ABC中,∠C=90°,點E是AC上的點,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3 cm,那么AE等于( )

A.3 cm
B. cm
C.6 cm
D. cm

【答案】C
【解析】根據(jù)DE為AB的中垂線可得:AE=BE,∠A=∠2,根據(jù)∠1=∠2可根據(jù)角平分線的性質可得:DE=CE=3cm,根據(jù)∠C=90°可得:∠1+∠2+∠A=90°,則∠1=∠2=∠A=30°,根據(jù)Rt△ADE的勾股定理可得:AE=2DE=6cm.


【考點精析】解答此題的關鍵在于理解三角形的內角和外角的相關知識,掌握三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角,以及對線段垂直平分線的性質的理解,了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一商店在某一時間以每件a元(a0)的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%

1)當a=60時,分析賣出這兩件衣服總的是盈利還是虧損,或是不盈不虧?

2)小安發(fā)現(xiàn):不論a為何值,這樣賣兩件衣服總的都是虧損.請判斷“小安發(fā)現(xiàn)”是否正確?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線AC,BD相交于點O,且AC=12cm,BD=16cm.點P從點A出發(fā),沿AB方向勻速運動,速度為1cm/s;過點P作直線PF∥AD,PF交CD于點F,過點F作EF⊥BD,且與AD、BD分別交于點E、Q;連接PE,設點P的運動時間為t(s)(0<t<10).
解答下列問題:
(1)填空:AB= cm;
(2)當t為何值時,PE∥BD;
(3)設四邊形APFE的面積為y(cm2
①求y與t之間的函數(shù)關系式;
②若用S表示圖形的面積,則是否存在某一時刻t,使得S四邊形APFE= S菱形ABCD?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.

(1)將△AOC經過怎樣的圖形變換可以得到△BOD?
(2)若 的長為πcm,OD=3cm,求圖中陰影部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算并觀察下列各式:

1個:(ab)(a+b)______

2個:(ab)(a2+ab+b2)______;

3個:(ab)(a3+a2b+ab2+b3)_______

……

這些等式反映出多項式乘法的某種運算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________

(3)利用(2)的猜想計算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量校園內一棵不可攀的樹的高度,數(shù)學應用實踐小組做了如下的探索實踐:根據(jù)《物理學》中光的反射定律,利用一面鏡子和一根皮尺,設計如圖的測量方案:把鏡子放在離樹(AB)9米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.7米,觀察者目高CD=1.8米,則樹(AB)的高度為米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作之一,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問水深、葭長各幾何?”

譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1=10)

如果設水深為,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小彬買了A、B兩種書,單價分別是18元、10元.

1)若兩種書共買了10本付款172元,求每種書各買了多少本?

2)買10本時付款可能是123元嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點,連結BE并延長交CD的延長線于點F.

(1)請連結AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

同步練習冊答案