【題目】某數(shù)學興趣小組在本校九年級學生中以“你最喜歡的項體育運動"為主體進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成下表和下圖.
項目 | 籃球 | 乒乓球 | 羽毛球 | 跳繩 | 其他 |
人數(shù) | 12 | 10 | 5 | 8 |
請根據(jù)圖表中的信息完成下列各題:
(1)本次共調(diào)查學生______名;
(2)=______;
(3)在扇形圖中,“跳繩”對應的扇形圓是______.
【答案】50 15
【解析】
(1)設本次共調(diào)查了x名學生,由統(tǒng)計表中的數(shù)據(jù)可知喜歡羽毛球的有10人,由扇形統(tǒng)計圖可知,喜歡羽毛球的人數(shù)是總?cè)藬?shù)的20%,故可得出x的值;
(2)由于喜歡籃球的人數(shù)占調(diào)查人數(shù)的30%,再由(1)中求出的x的值進行計算即可;
(3)由于喜歡跳繩的人數(shù)是5人,故可求出所占調(diào)查人數(shù)的百分比,故可求出對應的扇形圓心角的度數(shù);
解:(1)設本次共調(diào)查了x名學生,
∵由統(tǒng)計表中的數(shù)據(jù)可知喜歡羽毛球的有10人,由扇形統(tǒng)計圖可知,喜歡羽毛球的人數(shù)是總?cè)藬?shù)的20%,
∴,
解得:x=50(人);
∴本次共調(diào)查學生50名;
故答案為:50;
(2)∵喜歡籃球的人數(shù)占調(diào)查人數(shù)的30%,共有50人參加調(diào)查,
∴a=50×30%=15(人);
故答案為:15;
(3)∵由于喜歡跳繩的人數(shù)是5人,
∴,
∴“跳繩”對應的扇形圓心角的度數(shù)=;
故答案為:36°.
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進,兩種商品,購買個商品比購買個商品多花元,并且花費元購買商品和花費元購買商品的數(shù)量相等.
(1)求購買一個商品和一個商品各需要多少元?
(2)若商店準備購買,兩種商品共個,并且購買,兩種商品的總費用不超過元,那么商店至多購買商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2與l1交于點C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格紙中每個小正方形的邊長為1,一段圓弧經(jīng)過格點,點O為坐標原點.
(1)該圖中弧所在圓的圓心D的坐標為 ;.
(2)根據(jù)(1)中的條件填空:
①圓D的半徑= (結(jié)果保留根號);
②點(7,0)在圓D (填“上”、“內(nèi)”或“外”);
③∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰中,.點從點出發(fā)沿射線方向運動,同時點從出發(fā),以相同的速度沿射線方向運動,連,交直線于點
當點運動到中點時,求的長.
求證:.
過點作,交直線于,請?zhí)骄?/span>之間的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
請你根據(jù)上圖填寫下表:
銷售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 9 | |||
乙 | 9 | 8 |
請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:
從平均數(shù)和方差結(jié)合看;
從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看分析哪個汽車銷售公司較有潛力.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網(wǎng)格紙中每個小正方形的邊長為1,一段圓弧經(jīng)過格點,點O為坐標原點.
(1)該圖中弧所在圓的圓心D的坐標為 ;.
(2)根據(jù)(1)中的條件填空:
①圓D的半徑= (結(jié)果保留根號);
②點(7,0)在圓D (填“上”、“內(nèi)”或“外”);
③∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線分別與軸交于兩點,過點的直線交軸負半軸于,且.
(1)求直線的函數(shù)表達式:
(2)如圖2, 為軸上點右側(cè)的一動點,以為直角頂點,為一腰在第一象限內(nèi)作等腰直角三角形,連接并延長交軸于點.當點運動時,點的位置是否發(fā)生變化?如果不變請求出它的坐標:如果變化,請說明理由.
(3)直線交于,交于點,交軸于,是否存在這樣的直線,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC,垂足為C,且∠A<∠C,點E是一動點,其在BC上移動,連接DE,并過點E作EF⊥DE,點F在AB的延長線上,連接DF交BC于點G.
(1)請同學們根據(jù)以上提示,在上圖基礎(chǔ)上補全示意圖.
(2)當△ABD與△FDE全等,且AD=FE,∠A=30°,∠AFD=40°,求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com