【題目】如圖,在梯形ABCD中,ADBC,AD=1,BC=4AC=3,BD=4,則梯形ABCD的面積為______.

【答案】6

【解析】

過點DDEAC,交BC的延長線于點E,得四邊形ACED是平行四邊形,則DE=AC=3,CE=AD=1.根據(jù)勾股定理的逆定理即可證明三角形BDE是直角三角形.根據(jù)梯形的面積即為直角三角形BDE的面積進行計算.

解:過點DDEAC,交BC的延長線于點E,

則四邊形ACED是平行四邊形,

DE=AC=3CE=AD=1,

在三角形BDE中,∵BD=4,DE=3,BE=5,

∴根據(jù)勾股定理的逆定理,得三角形BDE是直角三角形,

∵四邊形ACED是平行四邊形

AD=CE,

AD+BC=BE

∵梯形ABCD與三角形BDE的高相等,

∴梯形的面積即是三角形BDE的面積,即3×4÷2=6,

故答案是:6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AD上一點,點BCD的中點,且AD9BD2

1)求AC的長;

2)若點E在直線AD上,且EA1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,4張如圖1的長為a,寬為bab)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S22S1,則a,b滿足(  )

A. aB. a2bC. abD. a3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調查中,①檢測深圳的空氣質量; ②為了解某中東呼吸綜合征(MERS)確診病人同一架飛機乘客的健康情況;③為保證“神舟9號”成功發(fā)射,對其零部件進行檢查;④調查某班50名同學的視力情況。其中適合采用抽樣調查的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級學生體育測試情況,以七年級(1)班學生的體育測試成績?yōu)闃颖荆?/span>A、B、CD四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下的統(tǒng)計圖,請你結合圖中所給的信息解答下列問題:

(說明:A級:90~100分;B級:75~89分;C級:60~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是 ;

3)若該校七年級有600名學生,請用樣本估計體育測試中A級學生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B分別在數(shù)軸原點O的兩側,且OB+8=OA,點A對應數(shù)是20.

1)求B點所對應的數(shù);

2)動點P、Q、R分別從B、O、A同時出發(fā),其中PQ均向右運動,速度分別為2個單位長度/秒,4個單位長度/秒,點R向左運動,速度為5個單位長度/秒,設它們的運動時間為t秒,當點R恰好為PQ的中點時,求t的值及R所表示的數(shù);

3)當時,BP+AQ的值是否保持不變?若不變,直接寫出定值;若變化,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,交F,若的周長為4,則菱形的面積為( .

A.B.C.16D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七(1)班學生的平均身高是160厘米,下表給出了該班6名學生的身高情況(單位:厘米).

學 生

A

B

C

D

E

F

身 高

157

162

159

154

163

165

身高與平均身高的差值

3

2

1

a

3

b

1)列式計算表中的數(shù)據(jù)ab;

2)這6名學生中誰最高?誰最矮?最高與最矮學生的身高相差多少?

3)這6名學生的平均身高與全班學生的平均身高相比,在數(shù)值上有什么關系?(通過計算回答)

查看答案和解析>>

同步練習冊答案