【題目】如圖,∠ACE=∠AEC.
(1)若CE平分∠ACD,求證:AB∥CD.
(2)若AB∥CD,求證:CE平分∠ACD.請在(1)、(2)中選擇一個進(jìn)行證明.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據(jù)等量代換得到∠ACE=∠AEC,再根據(jù)平行線的判定,即可得出AB∥CD;
(2)根據(jù)等量代換得到∠ACE=∠ECD,再根據(jù)角平分線的定義,即可得出CE平分∠ACD.
解:(1)∵CE平分∠ACD.(已知)
∴∠ACE=∠ECD.(角平線定義)
∵∠ACE=∠AEC.(已知)
∴∠ECD=∠AEC.(等量代換)
∴AB∥CD.(內(nèi)錯角相等,兩直線平行)
(2)∵AB∥CD.(已知)
∴∠AEC=∠ECD.(兩直線平行,內(nèi)錯角相等)
∵∠ACE=∠AEC.(已知)
∴∠ACE=∠ECD.(等量代換)
∴CE平分∠ACD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在相同條件下各射靶10次,甲10次射靶的成績的情況如圖所示,乙10次射靶的成績依次是:3環(huán)、4環(huán)、5環(huán)、8環(huán)、7環(huán)、7環(huán)、8環(huán)、9環(huán)、9環(huán)、10環(huán).
(1)請在圖中畫出乙的射靶成績的折線圖;
(2) 請從下列兩個不同角度對這次測試結(jié)果進(jìn)行分析.
①從平均數(shù)和方差相結(jié)合看(分析誰的成績穩(wěn)定些);
②從平均數(shù)和中位數(shù)相結(jié)合看(分析誰的成績好些).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= x2﹣ x+3 與x軸交于點A、B兩點(點A在點B的左側(cè)),與y軸交于點C,過點C作CD∥x軸,且交拋物線于點D,連接AD,交y軸于點E,連接AC.
(1)求S△ABD的值;
(2)如圖2,若點P是直線AD下方拋物線上一動點,過點P作PF∥y軸交直線AD于點F,作PG∥AC交直線AD于點G,當(dāng)△PGF的周長最大時,在線段DE上取一點Q,當(dāng)PQ+ QE的值最小時,求此時PQ+ QE的值;
(3)如圖3,M是BC的中點,以CM為斜邊作直角△CMN,使CN∥x軸,MN∥y軸,將△CMN沿射線CB平移,記平移后的三角形為△C′M′N′,當(dāng)點N′落在x軸上即停止運動,將此時的△C′M′N′繞點C′逆時針旋轉(zhuǎn)(旋轉(zhuǎn)度數(shù)不超過180°),旋轉(zhuǎn)過程中直線M′N′與直線CA交于點S,與y軸交于點T,與x軸交于點W,請問△CST是否能為等腰三角形?若能,請求出所有符合條件的WN′的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點C作CF平分∠DCE交DE于點F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東西向的馬路上有一個巡崗?fù)?/span>A,巡崗員甲從崗?fù)?/span>A出發(fā)以13km/h速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
4 | -5 | 3 | -4 | -3 | 6 | -1 |
(1)求第六次結(jié)束時甲的位置(在崗?fù)?/span>A的東邊還是西邊?距離多遠(yuǎn)?)
(2)在第幾次結(jié)束時距崗?fù)?/span>A最遠(yuǎn)?距離A多遠(yuǎn)?
(3)巡邏過程中配置無線對講機(jī),并一直與留守在崗?fù)?/span>A的乙進(jìn)行通話,問在甲巡邏過程中,甲與乙的保持通話時長共多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:① 平方等于64的數(shù)是8;② 若a,b互為相反數(shù),ab≠0,則;③ 若,則的值為負(fù)數(shù);④ 若ab≠0,則的取值在0,1,2,-2這四個數(shù)中,不可取的值是0.正確的個數(shù)為( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠ACB=90°點E是AB的中點,連接CE,過點E作ED⊥BC于點D,在DE的延長線上取一點F,使AF=CE,求證四邊形ACEF是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com