【題目】建華小區(qū)準(zhǔn)備新建50個停車位,以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位需0.5萬元;新建3個地上停車位和2個地下停車位需1.1萬元.

1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

2)若該小區(qū)預(yù)計投資金額超過10萬元而不超過11萬元,則共有幾種建造方案?

3)已知每個地上停車位月租金100元,每個地下停車位月租金300. 在(2)的條件下,新建停車位全部租出.若該小區(qū)將第一個月租金收入中的3600元用于舊車位的維修,其余收入繼續(xù)興建新車位,恰好用完,請直接寫出該小區(qū)選擇的是哪種建造方案?

【答案】1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.4萬元;(2)有4種建造方案;(3)建造方案是建造32個地上停車位,18個地下停車位.

【解析】

1)設(shè)新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,由題意得:;(2)設(shè)新建m個地上停車位,則:100.1m+0.450m)≤11,求整數(shù)解;(3)根據(jù)(2)方案結(jié)合條件進行分析.

解:(1)設(shè)新建一個地上停車位需x萬元,新建一個地下停車位需y萬元,由題意得:

,

解得,

答:新建一個地上停車位需0.1萬元,新建一個地下停車位需0.4萬元;

2)設(shè)新建m個地上停車位,則:

100.1m+0.450m)≤11,

解得30m,

因為m為整數(shù),所以m30m31m32m33,

對應(yīng)的50m2050m1950m1850m17,

答:有4種建造方案;

3)當(dāng)?shù)厣贤\囄唬?/span>30時,地下=20,30×100+20×3009000.用掉3600,剩余900036005400.因為修建一個地上停車位的費用是1000,一個地下是4000.5400不能湊成整數(shù),所以不符合題意.

同理得:當(dāng)?shù)厣贤\囄唬?/span>3133時.均不能湊成整數(shù).

當(dāng)算到地上停車位=32時,地下停車位=18,

32×100+18×3008600,860036005000

此時可湊成修建1個地上停車場和一個地下停車位,1000+40005000

所以答案是3218

答:建造方案是建造32個地上停車位,18個地下停車位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4EAB的中點,FAD上一點,且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(11),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標(biāo)是( 。

A. 20181B. 2018,0C. 2019,2 D. 2019,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進行了一次體育科目測試(把測試結(jié)果分為四個等級:A級、B級、C級、D級),并將那個測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生人數(shù)是   ;

2)扇形圖中∠α的度數(shù)是   ,并把條形統(tǒng)計圖補充完整;

3)對A,B,CD四個等級依次賦分為90,75,65,55(單位:分),比如:等級為A的同學(xué)體育得分為90分,,依此類推.該市九年級共有學(xué)生32000名,如果全部參加這次體育測試,估計該市九年級不及格(即60分以下)學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)兩種設(shè)備,已知每臺種設(shè)備的成本是種設(shè)備的15倍,公司若投入6萬元生產(chǎn)種設(shè)備,投人15萬元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共40臺.請解答下列問題:

1兩種設(shè)備每臺的成本分別是多少萬元?

2)若兩種設(shè)備每臺的售價分別是5000元、9000元,公司決定生產(chǎn)兩種設(shè)備共50臺,且其中種設(shè)備至少生產(chǎn)10臺,計劃銷售后獲利不低于12萬元,請問采用哪種生產(chǎn)方案公司所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.

(1)寫出點D的坐標(biāo)

(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.

①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;

②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當(dāng)點R的坐標(biāo)為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;

③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點O的正前方10m處起腳射門,足球沿拋物線飛向球門中心線;當(dāng)足球飛離地面高度為3m時達(dá)到最高點,此時足球飛行的水平距離為6m.已知球門的橫梁高為2.44m.

(1)在如圖所示的平面直角坐標(biāo)系中,問此飛行足球能否進球門?(不計其它情況)

(2)守門員乙站在距離球門2m處,他跳起時手的最大摸高為2.52m,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點A13),過點Ax軸的平行線,分別交兩條拋物線于點BC.則以下結(jié)論:

①無論x取何值,y2的值總是正數(shù);

a=1

③當(dāng)x=0時,y2﹣y1=4

2AB=3AC;

其中正確結(jié)論是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球若干個(除顏色外其余都相同),其中紅球2個(分別標(biāo)有1號、2號),藍(lán)球1個.若從中任意摸出一個球,它是藍(lán)球的概率為

1)求袋中黃球的個數(shù);

2)第一次任意摸出一個球(不放回),第二次再摸出一個球,請用畫樹狀圖或列表格的方法,求兩次摸到不同顏色球的概率.

查看答案和解析>>

同步練習(xí)冊答案