【題目】已知二次函數y=a(x+m)2的頂點坐標為(﹣1,0),且過點A(﹣2,﹣).
(1)求這個二次函數的解析式;
(2)點B(2,﹣2)在這個函數圖象上嗎?
(3)你能通過左,右平移函數圖象,使它過點B嗎?若能,請寫出平移方案.
【答案】(1)y=﹣(x+1)2;(2)點B(2,﹣2)不在這個函數的圖象上;(3)拋物線向左平移1個單位或平移5個單位函數,即可過點B;
【解析】
(1)根據待定系數法即可得出二次函數的解析式;
(2)代入B(2,-2)即可判斷;
(3)根據題意設平移后的解析式為y=-(x+1+m)2,代入B的坐標,求得m的植即可.
(1)∵二次函數y=a(x+m)2的頂點坐標為(﹣1,0),
∴m=1,
∴二次函數y=a(x+1)2,
把點A(﹣2,﹣)代入得a=﹣,
則拋物線的解析式為:y=﹣(x+1)2.
(2)把x=2代入y=﹣(x+1)2得y=﹣≠﹣2,
所以,點B(2,﹣2)不在這個函數的圖象上;
(3)根據題意設平移后的解析式為y=﹣(x+1+m)2,
把B(2,﹣2)代入得﹣2=﹣(2+1+m)2,
解得m=﹣1或﹣5,
所以拋物線向左平移1個單位或平移5個單位函數,即可過點B.
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,點是邊上的動點(點與點、 不重合),過點作交射線于點 ,聯結,點是的中點,過點 、作直線,交于點,聯結、.
(1)當點在邊上,設, .
①寫出關于 的函數關系式及定義域;
②判斷的形狀,并給出證明;
(2)如果,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象拋物線G經過(﹣5,0),(0,),(1,6)三點,直線l的解析式為y=2x﹣3
(1)求拋物線G的函數解析式;
(2)求證:拋物線G與直線L無公共點;
(3)若與l平行的直線y=2x+m與拋物線G只有一個公共點P,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)直接寫出y與x的函數關系式: .
(2)設一周的銷售利潤為S元,請求出S與x的函數關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區(qū),在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數額是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】節(jié)能又環(huán)保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛.比亞迪油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費用為元;若完全用電做動力行駛,則費用為元,已知汽車行駛中每千米用油費用比用電費用多元.
(1)求:汽車行駛中每千米用電費用是多少元?甲乙兩地的距離是多少千米?
(2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費用不超過元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.
(1)分別求出y1,y2與x之間的關系式;
(2)當甲、乙兩個商場的收費相同時,所買商品為多少件?
(3)當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點O是坐標原點,反比例函數y=的圖像經過A(,1).
(1)求此反比例函數的解析式;
(2)將線段OA繞O逆時針旋轉30°得到線段OB,判斷點B是否在此反比例函數的圖像上并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com