分析 根據(jù)等腰三角形的性質(zhì),直角三角形斜邊上的中線性質(zhì),三角形內(nèi)角和定理,等腰三角形的性質(zhì)得出∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,求出∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∠AOD=∠COE,∠COD=∠BOE,根據(jù)ASA推出△COE≌△AOD,△COD≌△BOE,根據(jù)全等三角形的性質(zhì)得出S△COE=S△AOD,AD=CE,∠CDO=∠BEO,再逐個(gè)判斷即可.
解答 解:∵在等腰直角△ABC中,∠ACB=90°,O是AB邊上的中點(diǎn),
∴∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,
∴∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,
∵∠DOE=90°,
∴∠AOD=∠COE=90°-∠COD,∠COD=∠BOE=90°-∠COE,
在△COE和△AOD中
$\left\{\begin{array}{l}{∠ECO=∠A}\\{CO=AO}\\{∠COE=∠DOA}\end{array}\right.$
∴△COE≌△AOD(ASA),
同理△COD≌△BOE,
∴S△COE=S△AOD,AD=CE,∠CDO=∠BEO,△ABC的面積是四邊形DOEC面積的2倍,
在△AOC和△BOC中
$\left\{\begin{array}{l}{CO=CO}\\{AC=BC}\\{AO=BO}\end{array}\right.$
∴△AOC≌△BOC,
∵AD=CE,
∴CD+CE=AC,
∵∠COA=90°,
∴CO<AC,
∴OC=DC+CE錯(cuò)誤;
即①②③⑤正確,④錯(cuò)誤;
故答案為:①②③⑤.
點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì),直角三角形斜邊上的中線性質(zhì),三角形內(nèi)角和定理,等腰三角形的性質(zhì)的應(yīng)用,能求出△COE≌△AOD和△COD≌△BOE是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com