【題目】學(xué)習(xí)了三角形全等的判定方法(即SSS,SAS,ASA,AAS)和直角三角形全等的判定方法(即HL)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
(初步思考)
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后對(duì)∠B進(jìn)行分類,可以分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
(深入探究)
第一種情況:當(dāng)∠B為銳角時(shí),△ABC和△DEF不一定全等.
(1)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請(qǐng)你用尺規(guī)在圖中確定點(diǎn)D,使△DEF和△ABC不全等(不寫作法,保留作圖痕跡);
第二種情況:當(dāng)∠B為直角時(shí),△ABC≌△DEF.
(2)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)____,可以知道Rt△ABC≌Rt△DEF.
第三種情況:當(dāng)∠B為鈍角時(shí),△ABC≌△DEF.
(3)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角,求證:△ABC≌△DEF.
【答案】(1)圖見(jiàn)解析;(2)HL;(3)證明見(jiàn)解析
【解析】
(1)以點(diǎn)C為圓心,AC的長(zhǎng)度為半徑畫弧,與AB的交點(diǎn)為點(diǎn)D,連接CD即可得出;
(2)根據(jù)題目條件可利用HL證明Rt△ABC≌Rt△DEF;
(3) 過(guò)點(diǎn)C作CM⊥AB的延長(zhǎng)線于M,過(guò)點(diǎn)F作FN⊥DE的延長(zhǎng)線于N,先證得△CBM≌△FEN,再證明△ACM≌△DFN,最后可得到△ABC≌△DEF.
解:(1)如圖所示:
;
(2)在Rt△ABC和Rt△DEF中,
,
∴Rt△ABC≌Rt△DEF(HL),
故答案為:HL;
(3)證明:過(guò)點(diǎn)C作CM⊥AB的延長(zhǎng)線于M,過(guò)點(diǎn)F作FN⊥DE的延長(zhǎng)線于N,
∵∠ABC=∠DEF,
∴∠CBM=∠FEN,
在△CBM和△FEN中,
,
∴△CBM≌△FEN,
∴CM=FN,BM=EN,
在Rt△ACM和Rt△DFN中,
,
∴Rt△ACM≌Rt△DFN(HL),
∴AM=DN,
∴DE=AB,
在△ABC和△DFE中,
,
∴△ABC≌△DEF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點(diǎn)D,交BE于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對(duì)教室采用藥熏法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時(shí)間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點(diǎn)燃后4分鐘燃盡,此時(shí)室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時(shí),y與x之間函數(shù)的表達(dá)式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達(dá)式;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時(shí),才能有效殺滅空氣中的病菌,那么此次消毒有效時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于點(diǎn)D,延長(zhǎng)DB至點(diǎn)F,使BF=BD連接AF.
(1)求證:AF=CD.
(2)若CE平分∠ACB交AB于點(diǎn)E,試猜想AC,AF,AE三條線段之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線C1:與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B,與軸的交點(diǎn)為C(0,-3),其頂點(diǎn)為D.
(1)求拋物線C1的解析式;
(2)如圖1,將△OBC沿軸向右平移m個(gè)單位長(zhǎng)度(0﹤≤)得到另一個(gè)三角形△EFG,將△EFG與△BCD重疊部分(四邊形BPGQ)的面積記為S,用含m的代數(shù)式表示S;
(3)如圖2,將拋物線C1平移,使其頂點(diǎn)為原點(diǎn)O,得到拋物線C2.若直線與拋物線C2交于S、T兩點(diǎn),點(diǎn)是線段ST上一動(dòng)點(diǎn)(不與S、T重合),試探究拋物線C2上是否存在一點(diǎn)R,點(diǎn)R關(guān)于點(diǎn)N的中心對(duì)稱點(diǎn)K也在拋物線C2上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com