【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB8AD10,并設(shè)點(diǎn)B坐標(biāo)為(m0),其中m0

1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);

2)連接OA,若△OAF是等腰三角形,求m的值;

3)如圖2,設(shè)拋物線yaxm+62+h經(jīng)過(guò)AE兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM90°,求a、hm的值.

【答案】(1)點(diǎn)E的坐標(biāo)為(m10,3),點(diǎn)F的坐標(biāo)為(m60);(2)m=﹣6或﹣4或﹣;(3)a,h=﹣1,m=﹣12

【解析】

1)根據(jù)四邊形ABCD是矩形以及由折疊對(duì)稱性得出AF=AD=10,EF=DE,進(jìn)而求出BF的長(zhǎng),即可得出E,F點(diǎn)的坐標(biāo);
2)分三種情況討論:若AO=AF,OF=FA,AO=OF,利用等腰三角形性質(zhì)和勾股定理求出即可;
3)由Em+10,3),Am,8),代入二次函數(shù)解析式得出M點(diǎn)的坐標(biāo),再證△AOB∽△AMG,根據(jù)相似三角形性質(zhì)可求出m的值即可.

解:(1)∵四邊形ABCD是矩形,AB8,AD10

ADBC10,ABCD8,∠D=∠DCB=∠ABC90°

由折疊對(duì)稱性:AFAD10,FEDE,

RtABF中,BF6,

FC4,

設(shè)DEx,則CE8x,

RtECF中,42+8x2x2,得x5,

CE8x3,

∵點(diǎn)B的坐標(biāo)為(m,0),

∴點(diǎn)E的坐標(biāo)為(m10,3),點(diǎn)F的坐標(biāo)為(m6,0);

2)分三種情形討論:

AOAF,

ABOFBF6,

OBBF6

m=﹣6;

OFAF,則m6=﹣10,得m=﹣4

AOOF,

RtAOB中,AO2OB2+AB2m2+64,

∴(m62m2+64,得m=﹣;

由上可得,m=﹣6或﹣4或﹣

3)由(1)知Am,8),Em103),

∵拋物線yaxm+62+h經(jīng)過(guò)A、E兩點(diǎn),

,

解得,,

∴該拋物線的解析式為yxm+621,

∴點(diǎn)M的坐標(biāo)為(m6,﹣1),

設(shè)對(duì)稱軸交ADG

Gm6,8),

AG6,GM8﹣(﹣1)=9,

∵∠OAB+BAM90°,∠BAM+MAG90°

∴∠OAB=∠MAG,

又∵∠ABO=∠MGA90°

∴△AOB∽△AMG,

,

,

解得,m=﹣12,

由上可得,a,h=﹣1m=﹣12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)CDO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說(shuō)明理由;

(2)的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫(xiě)出AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k0)與軸交于點(diǎn)A(-2.0),與反比例函數(shù)y=(m0)的圖象交于點(diǎn)B(2,n),連接BO,若SAOB=4.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:

(2)若直線AB與y軸的交點(diǎn)為C.求△OCB的面積

(3)根據(jù)圖象,直接寫(xiě)出當(dāng)x>0時(shí),不等式>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,軸的正半軸,,分別與雙曲線相交于點(diǎn)和點(diǎn),且,若,則點(diǎn)的橫坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾的分類(lèi)處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門(mén)為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類(lèi)情況,其相關(guān)信息如下:

根據(jù)圖表解答下列問(wèn)題:

1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖樣中,產(chǎn)生的有害垃圾C所對(duì)應(yīng)的圓心角 度;

3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類(lèi)垃圾占13%,每回收1噸塑料類(lèi)垃圾可獲得0.5噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類(lèi)處理,那么每月回收的塑料類(lèi)垃圾可以獲得多少噸二級(jí)原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)DAB上,以AD為直徑的⊙O與邊BC相切于點(diǎn)E,與邊AC相交于點(diǎn)G,且,連接GO并延長(zhǎng)交⊙O于點(diǎn)F,連接BF

1)求證:AOAG;

2)求證:BF是⊙O的切線;

3)若BD6,求圖形中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用10個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無(wú)縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要______個(gè)小立方體,王亮所搭幾何體的表面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

九年級(jí)(1)班參加體育測(cè)試的學(xué)生有_________人;

將條形統(tǒng)計(jì)圖補(bǔ)充完整;

在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是___,等級(jí)C對(duì)應(yīng)的圓心角的度數(shù)為___°;

若該校九年級(jí)學(xué)生共有850人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有___人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的1.5倍,兩人各加工300個(gè)這種零件,甲比乙少用5天.

1)求甲、乙兩人每天各加工多少個(gè)這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是150元和120元,現(xiàn)有1500個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)為7800元,那么甲、乙各加工了多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案