【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點(A在B的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標為D(﹣1,4).
(1)求A、B兩點的坐標;
(2)求拋物線的解析式;
(3)過點D作直線DE∥y軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
【答案】(1)A點坐標(﹣3,0),B點坐標(1,0);(2)拋物線的解析式為y=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由見解析.
【解析】(1)根據(jù)OA,OB的長,可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(3)根據(jù)相似三角形的判定與性質(zhì),可得EG,EF的長,根據(jù)整式的加減,可得答案.
(1)由拋物線y=ax2+bx+c交x軸于A、B兩點(A在B的左側(cè)),且OA=3,OB=1,得
A點坐標(﹣3,0),B點坐標(1,0);
(2)設(shè)拋物線的解析式為y=a(x+3)(x﹣1),
把C點坐標代入函數(shù)解析式,得
a(0+3)(0﹣1)=3,
解得a=﹣1,
拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(3)EF+EG=8(或EF+EG是定值),理由如下:
過點P作PQ∥y軸交x軸于Q,如圖,
設(shè)P(t,﹣t2﹣2t+3),
則PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,
∵PQ∥EF,
∴△AEF∽△AQP,
∴,
∴EF==;
又∵PQ∥EG,
∴△BEG∽△BQP,
∴,
∴EG===2(t+3),
∴EF+EG=2(1﹣t)+2(t+3)=8.
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為 ,線段AD、BE之間的關(guān)系 .
(2)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.①請判斷∠AEB的度數(shù),并說明理由;②當CM=5時,AC比BE的長度多6時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D.
(1)如圖1,點E,F(xiàn)在AB,AC上,且∠EDF=90°.求證:BE=AF;
(2)點M,N分別在直線AD,AC上,且∠BMN=90°.
①如圖2,當點M在AD的延長線上時,求證:AB+AN=AM;
②當點M在點A,D之間,且∠AMN=30°時,已知AB=2,直接寫出線段AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車經(jīng)銷商計劃投入7.1萬元購進100輛A型和30輛B型自行車,其中B型車單價是A型車單價的6倍少60元.
(1)求A、B兩種型號的自行車單價分別是多少元?
(2)后來由于該經(jīng)銷商資金緊張,投入購車的資金不超過5.86萬元,但購進這批自行年的總數(shù)不變,那么至多能購進B型車多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O、D分別是邊AC、AB的中點,過點C作CE∥AB交DO的延長線于點E,連接AE.
(1)求證:四邊形AECD是菱形;
(2)若四邊形AECD的面積為24,tan∠BAC=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應的數(shù)記為a,動點B運動到的位置對應的數(shù)記為b,定點C對應的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+|b﹣2|=0,則x= ,y= .并請在數(shù)軸上標出A、B兩點的位置.
(2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z= .
(3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖點 P 是等邊△ABC 內(nèi)一點,將△APC 繞點 C 順時針旋轉(zhuǎn) 60°得到△BDC,連接 PD.
(1)求證:△DPC 是等邊三角形;
(2)當∠APC=150°時,試判斷△DPB 的形狀,并說明理由;
(3)當∠APB=100°且△DPB 是等腰三角形,求∠APC 的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于C、D兩點,與雙曲線在第一象限內(nèi)交于點P,過點P作PA⊥x軸于點A,PB⊥y軸于點B,已知B(0,4)且S△DBP=27.
(1)直接寫出直線的解析式_____________,雙曲線的解析式____________;
(2)設(shè)點Q是直線上的一點,且滿足△DOQ的面積是△COD面積的2倍,請求出點Q的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加“荊州市中小學生首屆詩詞大會”,某校八年級的兩班學生進行了預選,其中班上前5名學生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
班級 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認為哪個班前5名同學的成績較好?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com