【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點,⊙O的切線MA與FB的延長線交于點M;P為AM上一點,PB的延長線交⊙O于點C,D為BC上一點且PA=PD,AD的延長線交⊙O于點E.
(1)求證: ;
(2)若ED、EA的長是一元二次方程的兩根,求BE的長;
(3)若MA=,sin∠AMF=,求AB的長.
【答案】(1)證明見解析;(2);(3).
【解析】試題分析:(1)連接OA、OE交BC于T.想辦法證明OE⊥BC即可;
(2)由ED、EA的長是一元二次方程的兩根,可得EDEA=5,由△BED∽△AEB,可得,推出BE2=DEEA=5,即可解決問題;
(3)作AH⊥OM于H.求出AH、BH即可解決問題;
試題解析:(1)證明:連接OA、OE交BC于T.
∵AM是切線,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴ .
(2)∵ED、EA的長是一元二次方程的兩根,∴EDEA=5,∵,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴,∴BE2=DEEA=5,∴BE=.
(3)作AH⊥OM于H.在Rt△AMO中,∵AM=,sin∠M==,設OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=.BH=2,∴span>AB===.
科目:初中數學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
請結合圖表完成下列各題:
(1)①表中a的值為 , 中位數在第組;
②頻數分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
組別 | 成績x分 | 頻數(人數) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】作三角形用到的基本作圖是:
(1)___________________________;(2)_______________________________;
【答案】 作一個角等于已知角 作一條線段等于已知線段
【解析】試題解析:作三角形用到的基本作圖是:(1). 作一個角等于已知角(2). 作一條線段等于已知線段
故答案為:(1). 作一個角等于已知角(2). 作一條線段等于已知線段.
【題型】填空題
【結束】
10
【題目】尺規(guī)作三角形的類型:
尺 規(guī) 作 圖 | 類型 | 依據 |
已知兩邊及其夾角作三角形 | __________ | |
已知兩角一邊作三角形 | __________(或) | |
已知三邊作三角形 | __________ |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點,l4和l1,l2分別交于C,D兩點,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關系,并說明理由;
(3)應用(2)中的結論解答下列問題;
如圖②,點A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數;
(4)如果點P在直線l3上且在A,B兩點外側運動時,其他條件不變,試探究∠1,∠2,∠3之間的關系(點P和A,B兩點不重合),直接寫出結論即可.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在國家“一帶一路”戰(zhàn)略下,我國與歐洲開通了互利互惠的中歐班列.行程最長,途徑城市和國家最多的一趟專列全程長13000km,將13000用科學記數法表示為( 。
A. 13×103 B. 1.3×103 C. 13×104 D. 1.3×104
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com