【題目】如圖,點A是反比例函數y= (x>0)的圖象上一點,OA與反比例函數y= (x>0)的圖象交于點C,點B在y軸的正半軸上,且AB=OA,若△ABC的面積為6,則k的值為 .
【答案】9
【解析】解:過A作AH⊥BO于H,AE⊥x軸于E,過C作CD⊥x軸于D,
∵點A是反比例函數y= (x>0)的圖象上一點,
∴S△AHO=S△AOE= k,
∵AB=AO,
∴BH=OH,
∴S△ABH=S△AOH= k,
∴S△AOB=k,
∵點C反比例函數y= (x>0)的圖象上,
∴S△COD= ,
∵CD∥AE,
∴△COD∽△AOE,
∴ =( )2= ,
∴ = ,
∴ = ,
∵△ABC的面積為6,
∴ = ,
解得k=9,k=4(不合題意,舍去),
∴k=9.
所以答案是:9.
【考點精析】本題主要考查了比例系數k的幾何意義的相關知識點,需要掌握幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】計算題:二次根式與分式運算
(1)計算:( )﹣2+( ﹣ )0+(﹣1)1001+( ﹣3 )×tan30°
(2)先化簡,再求值: ﹣ ( ﹣a2+b2),其中a=3﹣2 ,b=3 ﹣3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為增強學生的愛國意識,某中學舉辦“愛我中華”朗誦比賽,全校學生都參加,并對表現優(yōu)異的學生進行表彰,設置一、二、三等獎和進步獎共四個獎項,賽后,校統(tǒng)計小組隨機抽取了九年級兩個班級,并將這兩個班的獲獎情況繪制成以下兩幅不完整的統(tǒng)計圖.
請根據圖中的信息,解答下列問題:
(1)求本次調查抽取的學生人數,并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,表示“三等獎”的扇形所對應的圓心角度數是 72 °.
(3)若該校共有2600名學生,試估計得獎的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表是橘子的銷售額隨橘子賣出質量的變化表:
質量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
銷售額/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)這個表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)當橘子賣出5千克時,銷售額是_______元.
(3)如果用表示橘子賣出的質量,表示銷售額,按表中給出的關系,與之間的關系式為______.
(4)當橘子的銷售額是100元時,共賣出多少千克橘子?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)試說明:∠BFD=∠ABC;
(2)若∠ABC=40°,EG∥AD,EH⊥BE,求∠HEG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們經常利用圖形描述問題和分析問題.借助直觀的幾何圖形,把問題變得簡明、形象,有助于探索解決問題的思路.
(1)在整式乘法公式的學習中,小明為了解釋某一公式,構造了幾何圖形,如圖1所示,先畫了邊長為a,b的大小兩個正方形,再延長小正方形的兩邊,把大正方形分割為四部分,并分別標記為Ⅰ,Ⅱ,Ⅲ,Ⅳ,然后補出圖形Ⅴ.顯然圖形Ⅴ與圖形Ⅳ的面積相等,所以圖形Ⅰ,Ⅱ,Ⅴ的面積和與圖形Ⅰ,Ⅱ,Ⅳ的面積和相等,從而驗證了公式.則小明驗證的公式是 ;
(2)計算:(x+a)(x+b)= ;請畫圖說明這個等式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】端午節(jié)期間,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(轉盤被平均分成16份),并規(guī)定:顧客每購買100元的商品,就能獲得一次轉轉盤的機會,如果轉盤停止后,指針正好對準紅色、黃色或綠色區(qū)域,顧客就可以分別獲得玩具熊、童話書、水彩筆.小明和媽媽購買了125元的商品,請你回答下列問題:
(1)小明獲得獎品的概率是多少?
(2)小明獲得玩具熊、童話書、水彩筆的概率分別是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線.
(1)如圖1,直接寫出,和之間的數量關系.
(2)如圖2,,分別平分,,那么和有怎樣的數量關系?請說明理由.
(3)若點E的位置如圖3所示,,仍分別平分,,請直接寫出和的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com