【題目】如圖,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.
(1)觀察直線AB與直線DE的位置關(guān)系,你能得出什么結(jié)論并說(shuō)明理由.
(2)求∠AFE的度數(shù).
【答案】(1)AB∥DE.理由見(jiàn)解析;(2)∠AFE=134°.
【解析】
(1)先延長(zhǎng)AF、DE相交于點(diǎn)G,根據(jù)兩直線平行同旁內(nèi)角互補(bǔ)可得∠CDE+∠G=180°.又已知∠CDE=∠BAF,等量代換可得∠BAF+∠G=180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得AB∥DE;
(2)先延長(zhǎng)BC、ED相交于點(diǎn)H,由垂直的定義得∠B=90°,再由兩直線平行,同旁內(nèi)角互補(bǔ)可得∠H+∠B=180°,所以∠H=90°,最后可結(jié)合圖形,根據(jù)鄰補(bǔ)角的定義求得∠AFE的度數(shù).
(1)AB∥DE.
理由如下:
延長(zhǎng)AF、DE相交于點(diǎn)G,
∵CD∥AF,
∴∠CDE+∠G=180°.
∵∠CDE=∠BAF,
∴∠BAF+∠G=180°,
∴AB∥DE;
(2)延長(zhǎng)BC、ED相交于點(diǎn)H.
∵AB⊥BC,
∴∠B=90°.
∵AB∥DE,
∴∠H+∠B=180°,
∴∠H=90°.
∵∠BCD=124°,
∴∠DCH=56°,
∴∠CDH=34°,
∴∠G=∠CDH=34°.
∵∠DEF=80°,
∴∠EFG=80°-34°=46°,
∴∠AFE=180°-∠EFG
=180°-46°
=134°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了解在校初中生閱讀數(shù)學(xué)教科書(shū)的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查.依據(jù)相關(guān)數(shù)據(jù)繪制成如圖所示的不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題:
某校初中生閱讀數(shù)學(xué)教科書(shū)情況統(tǒng)計(jì)圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說(shuō)不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計(jì)圖.
(2)若該校共有初中生2 300名,請(qǐng)估計(jì)該!安恢匾曢喿x數(shù)學(xué)教科書(shū)”的初中生人數(shù).
(3)①根據(jù)上面的統(tǒng)計(jì)結(jié)果,談?wù)勀銓?duì)該校初中生閱讀數(shù)學(xué)教科書(shū)的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學(xué)教科書(shū)的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,DE∥BC交AC于點(diǎn)E,EF⊥CD于點(diǎn)G,交BC于點(diǎn)F.
(1)求證:∠ADE=∠EFC;
(2)若∠ACB=72°,∠A=60°,求∠DCB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射線l過(guò)點(diǎn)D且與x軸平行,點(diǎn)P、Q分別是l和x軸正半軸上動(dòng)點(diǎn),滿足∠PQO=60°.
(1)①點(diǎn)B的坐標(biāo)是 ;②∠CAO= 度;③當(dāng)點(diǎn)Q與點(diǎn)A重合 時(shí),點(diǎn)P的坐標(biāo)為 ;(直接寫(xiě)出答案)
(2)設(shè)OA的中點(diǎn)為N,PQ與線段AC相交于點(diǎn)M,是否存在點(diǎn)P,使△AMN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo)為m;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)點(diǎn)P的橫坐標(biāo)為x,△OPQ與矩形OABC的重疊部分的面積為S,試求S與x的函數(shù)關(guān)系式和相應(yīng)的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AO是角平分線,D為AO上一點(diǎn),作△CDE,使DE=DC,∠EDC=∠BAC,連接BE.
(1)若∠BAC=60°,求證:△ACD≌△BCE;
(2)若∠BAC=90°,AD=DO,求的值;
(3)若∠BAC=90°,F為BE中點(diǎn),G為 BE延長(zhǎng)線上一點(diǎn),CF=CG,AD=nDO,直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD中,∠ADC的平分線DE與BC邊交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD). 若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交線段DA于點(diǎn)H、G.
(1) 求證:PG=PF;
(2) 探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由.
如圖,已知∠B+∠BCD=180°,∠B=∠D.
試說(shuō)明:∠E=∠DFE
解:∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知)
∴∠DCE= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得: .
,
,
.
直接開(kāi)平方并整理,得. , .
我們稱小明這種解法為“平均數(shù)法”.
(1)下面是小明用“平均數(shù)法”解方程時(shí)寫(xiě)的解題過(guò)程.
解:原方程可變形,得: .
,
.
直接開(kāi)平方并整理,得. , .
上述過(guò)程中的a、b、c、d表示的數(shù)分別為 , , , .
(2)請(qǐng)用“平均數(shù)法”解方程: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com