如圖,正六邊形ABCDEF內(nèi)接于⊙O,若⊙O的半徑為3,則陰影部分的面積為 (結(jié)果保留π).
3π【考點(diǎn)】正多邊形和圓;扇形面積的計(jì)算.
【分析】首先連接OC,OE,分別交BD,DF于點(diǎn)M,N,易證得S△OBM=S△DCM,同理:S△OFN=S△DEN,則可得S陰影=S扇形OCE.
【解答】解:連接OC,OE,分別交BD,DF于點(diǎn)M,N,
∵正六邊形ABCDEF內(nèi)接于⊙O,
∴∠BOC=60°,∠BCD=∠COE=120°,
∵OB=OC,
∴△OBC是等邊三角形,
∴∠OBC=∠OCB=60°,
∴∠OCD=∠OCB,
∵BC=CD,
∴∠CBD=∠CDM=30°,BM=DM,
∴∠OBM=30°,S△DCM=S△BCM,
∴∠OBM=∠CBD,
∴OM=CM,
∴S△OBM=S△BCM,
∴S△OBM=S△DCM,
同理:S△OFN=S△DEN,
∴S陰影=S扇形OCE==3π.
故答案為:3π.
【點(diǎn)評(píng)】此題考查了正多邊形與圓的知識(shí)以及扇形的面積公式.注意證得S陰影=S扇形OCE是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊與對(duì)角線BD重合,折痕為DG,則AG的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖①,平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B的坐標(biāo)為(2,4),將矩形OABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到矩形AFED,直線y=kx+b經(jīng)過(guò)點(diǎn)G(4,0),交y軸于點(diǎn)H.
(1)點(diǎn)D、E的坐標(biāo)分別為 .
(2)當(dāng)直線GH經(jīng)過(guò)EF中點(diǎn)K時(shí),如圖②,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿著折線C﹣B﹣D以每秒1個(gè)單位速度向終點(diǎn)D運(yùn)動(dòng),連結(jié)PH、PG,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒),△PGH的面積為S(平方單位).
①求直線GH所對(duì)應(yīng)的函數(shù)關(guān)系式.
②求S與t之間的函數(shù)關(guān)系式.
(3)當(dāng)直線GH經(jīng)過(guò)點(diǎn)E時(shí),如圖③,點(diǎn)Q是射線B﹣D﹣E﹣F上的點(diǎn),過(guò)點(diǎn)Q作QM⊥GH于點(diǎn)M,作QN⊥x軸于點(diǎn)N,當(dāng)△QMN為等腰三角形時(shí),直接寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品.
(1)如果隨機(jī)翻1張牌,那么抽中20元獎(jiǎng)品的概率為 25%
(2)如果隨機(jī)翻2張牌,且第一次翻過(guò)的牌不再參加下次翻牌,則所獲獎(jiǎng)品總值不低于30元的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在▱ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=6,AB=5,則AE的長(zhǎng)為( 。
A.4 B.6 C.8 D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,偶函數(shù)的圖象如字母M,奇函數(shù)的圖象如字母N,若方程的實(shí)根個(gè)數(shù)分別為,則 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com