【題目】如果一個(gè)三角形有一條邊上的高等于這條邊的一半,那么我們把這個(gè)三角形叫做“半高三角形”.
如圖1,對(duì)于△ABC,BC邊上的高AD等于BC的一半,△ABC就是半高三角形,此時(shí),稱△ABC是BC類(lèi)半高三角形;如圖2,對(duì)于△EFG,EF邊上的高GH等于EF的一半,△EFG就是半高三角形,此時(shí),稱△EFG是EF類(lèi)半高三角形.
(1)直接寫(xiě)出下列3個(gè)小題的答案.
①若一個(gè)三角形既是等腰三角形又是半高三角形,則其底角度數(shù)的所有可能值為 .
②若一個(gè)三角形既是直角三角形又是半高三角形,則其最小角的正切值為 .
③如圖3,正方形網(wǎng)格中,L,M是已知的兩個(gè)格點(diǎn),若格點(diǎn)N使得△LMN為半高三角形,且△LMN為等腰三角形或直角三角形,則這樣的格點(diǎn)N共有 個(gè).
(2)如圖,平面直角坐標(biāo)系內(nèi),直線y=x+2與拋物線y=x2交于R,S兩點(diǎn),點(diǎn)T坐標(biāo)為(0,5),點(diǎn)P是拋物線y=x2上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是坐標(biāo)系內(nèi)一點(diǎn),且使得△RSQ為RS類(lèi)半高三角形.
①當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)S之間(包括點(diǎn)R,S),且PQ取得最小值時(shí),求點(diǎn)P的坐標(biāo).
②當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)O之間(包括點(diǎn)R,O)時(shí),求PQ+QT的最小值.
【答案】(1)①45°、15°、75°;②1或;③7; (2)①點(diǎn)P′(,),此時(shí),P(P′)Q取得最小值;②當(dāng)點(diǎn)P與點(diǎn)R重合,且P、Q、H在一條直線且與直線HT垂直時(shí),PQ+QT有最小值,最小值為4.
【解析】
(1)①②分底邊上的高等于底邊的一半、腰上的高等于腰長(zhǎng)的一半兩種情況分別求解即可;③如圖3,這樣的格點(diǎn)N共有7個(gè);
(2)①如圖4,當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)S之間時(shí),與RS平行且與拋物線只有一個(gè)交點(diǎn)P′時(shí),PQ取得最小值,即可求解;②當(dāng)點(diǎn)P與點(diǎn)R重合,且P、Q、H在一條直線且與直線HT垂直時(shí),PQ+QT有最小值,即可求解.
(1)①當(dāng)?shù)走吷系母叩扔诘走叺囊话霑r(shí),
如下圖△ABC為等腰三角形,AB=AC,AD=BC,
則AD=CD,則∠B=∠C=45°;
當(dāng)腰上的高等于腰長(zhǎng)的一半時(shí),
同理底角為75°或15°,
故:答案為45°、15°、75°;
②當(dāng)?shù)走吷系母叩扔诘走叺囊话霑r(shí),如上圖,△ABC為等腰直角三角形,
故最小角為45°,最小角的正切值為1;
腰上的高等于腰長(zhǎng)的一半時(shí),同理可得:最小角的正切值為,
故答案為1或;
③如圖3,這樣的格點(diǎn)N共有7個(gè),具體情況見(jiàn)下圖,小黑點(diǎn)所示的位置,
(2)將拋物線與直線方程聯(lián)立并解得:x=﹣1或2,
即:點(diǎn)R、S的坐標(biāo)分別為(﹣1,1)、(2,4),則RS=,
則RS邊上的高為,
則點(diǎn)Q在于RS平行的上下兩條直線上,如下圖,
過(guò)點(diǎn)Q作QH⊥NH交于點(diǎn)H,則HQ=,則QN==3,
點(diǎn)N(0,2),則點(diǎn)M(5,0),點(diǎn)M于點(diǎn)T重合,
則點(diǎn)Q的直線方程為:y=x+5,
當(dāng)該直線在直線RS的下方時(shí),y=x﹣1,
故點(diǎn)Q所在的直線方程為:y=x+5或y=x﹣1;
①如圖4,當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)S之間時(shí),
設(shè)與RS平行且與拋物線只有一個(gè)交點(diǎn)P′的直線方程為:y=x+d,
將該方程于拋物線方程聯(lián)立并整理得:x2﹣x﹣d=0,
△=1+4d=0,解得:d=﹣,
此時(shí),x2﹣x+=0,解得:x=,
點(diǎn)P′(,),此時(shí),P(P′)Q取得最小值;
②當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)O之間(包括點(diǎn)R,O)時(shí),
如圖4,連接PQ,過(guò)點(diǎn)Q作QH垂直過(guò)點(diǎn)T于x軸平行的直線于點(diǎn)H,
則HQ=QT,
PQ+QT=PQ+QH,
當(dāng)點(diǎn)P與點(diǎn)R重合,且P、Q、H在一條直線且與直線HT垂直時(shí),PQ+QT有最小值,
則其最小值為yT﹣yR=5﹣1=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時(shí),AP的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D,直線y=﹣2x﹣1經(jīng)過(guò)拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.
(1)求m的值及該拋物線的解析式
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我市九年級(jí)學(xué)生身體素質(zhì)情況,從全市九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽樣測(cè)試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 °,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)全市九年級(jí)有學(xué)生6200名,如果全部參加這次體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4,∠A=60°,E是邊AD的中點(diǎn),F是邊BC上的一個(gè)動(dòng)點(diǎn),EG=EF,且∠GEF=60°,則GB+GC的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角三角形紙板OAB按如圖所示方式放置在平面直角坐標(biāo)系中,OB在x軸上,OB=4,OA=2將三角形紙板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,則第2019秒時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)A ′ 的坐標(biāo)為( )
A. (-3,-)B. (3,-)C. (-3,)D. (0,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】母親節(jié)前,某淘寶店從廠家購(gòu)進(jìn)某款網(wǎng)紅禮盒,已知該款禮盒每個(gè)成本價(jià)為30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該禮盒每天的銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系.當(dāng)該款禮盒每個(gè)售價(jià)為40元時(shí),每天可賣(mài)出300個(gè);當(dāng)該款禮盒每個(gè)售價(jià)為55元時(shí),每天可賣(mài)出150個(gè).
(1)求y與x之間的函數(shù)解析式(不要求寫(xiě)出x的取值范圍);
(2)若該店老板想達(dá)到每天不低于240個(gè)的銷(xiāo)售量,則該禮盒每個(gè)售價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對(duì)自己做錯(cuò)題進(jìn)行整理、分析、改正”(選項(xiàng)為:很少、有時(shí)、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)該調(diào)查的樣本容量為________, =________%, =________%,“常!睂(duì)應(yīng)扇形的圓心角的度數(shù)為__________;
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有3200名學(xué)生,請(qǐng)你估計(jì)其中“總是”對(duì)錯(cuò)題進(jìn)行整理、分析、改正的
學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點(diǎn)M,N是線段EF上兩點(diǎn),且EM=FN,連接AN,CM.
(1)求證:△AFN≌△CEM;
(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com