【題目】已知:如圖,AB是⊙O的直徑,⊙O過AC的中點(diǎn)D,DE⊥BC,交BC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)如果CD=8,CE=6,求⊙O的半徑.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)連接OD,根據(jù)三角形中位線定理得出OD∥BC,由DE⊥BC得出OD⊥DE,根據(jù)切線的判定定理即可得出結(jié)論;
(2)先證明Rt△CDB∽R(shí)t△CED,然后根據(jù)相似三角形的對應(yīng)邊成比例求出BC的長,最后根據(jù)三角形的中位線定理即可求出圓的半徑.
試題解析:
(1)證明:連接OD;
∵AD=CD,AO=BO,
∴OD∥BC.
∵DE⊥BC,
∴OD⊥DE.
∴DE與⊙O相切.
(2)連接BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴BD⊥AC,
∴∠BDC=90°,
又∵DE⊥BC,
Rt△CDB∽R(shí)t△CED,
∴=,
∴BC==
又∵OD=BC,
∴OD=×=,
即⊙O的半徑為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC與BD相交于點(diǎn)O,且OA=OB,OC=OD,AD=BC,則圖中共有全等三角形( )
A. 4對B. 3對C. 2對D. 1對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,E為CD邊的中點(diǎn),將繞點(diǎn)E順時(shí)針旋轉(zhuǎn),點(diǎn)D的對應(yīng)點(diǎn)為C,點(diǎn)A的對應(yīng)點(diǎn)為F,過點(diǎn)E作交BC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論:;;;點(diǎn)N為的外心.其中正確的個(gè)數(shù)為
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)圖象第一象限上一點(diǎn),過點(diǎn)A作軸于B點(diǎn),以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點(diǎn)C,在AB的左側(cè)半圓上有一動(dòng)點(diǎn)D,連結(jié)CD交AB于點(diǎn)記的面積為,的面積為,連接BC,則是______三角形,若的值最大為1,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平整的地面上,由若干個(gè)棱長完全相同的小正方體搭成一個(gè)幾何體.
(1)請畫出這個(gè)幾何體的主視圖和左視圖(作圖必須用黑色墨水描黑);
(2)如果保持主視圖和左視圖不變,那么這個(gè)幾何體最多可以再添加 個(gè)小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直線上一點(diǎn),為任一射線,平分,平分,
(1)分別寫出圖中與的補(bǔ)角;
(2)與有怎樣的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(1)根據(jù)以上規(guī)律,則(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;
(2)你能否由此歸納出一般規(guī)律(x﹣1)(xn+xn﹣1+……+x+1)= ;
(3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解高峰時(shí)段從總站乘16路車出行的人數(shù),隨機(jī)抽查了10個(gè)班次乘該路車人數(shù),結(jié)果如下:
14,23,16,25,23,28,26,27,23,25.
(1)計(jì)算這10個(gè)班次乘車人數(shù)的平均數(shù);
(2)如果16路車在高峰時(shí)段從總站共出車60個(gè)班次,根據(jù)上面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車出行的乘客共有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com