16.(1)計算:(-1)2017+($\frac{1}{2}$)-2+$\sqrt{8}$+|2$\sqrt{2}$-3|-(π-3.14)0
(2)解方程:$\frac{1+x}{x-1}-\frac{6}{{{x^2}-1}}=1$.

分析 (1)原式利用乘方的意義,零指數(shù)冪、負整數(shù)指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計算即可得到結果;
(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.

解答 解:(1)原式=-1+4+2$\sqrt{2}$+3-2$\sqrt{2}$-1=5;
(2)方程兩邊同時乘以(x+1)(x-1)得:(1+x)(x+1)-6=(x+1)(x-1),
整理得:x2+2x+1-6=x2-1,
解得:x=2,
檢驗:把x=2代入(x+1)(x-1)=3×1=3≠0,
則x=2是原方程的解.

點評 此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,把未知數(shù)系數(shù)化為1,求出解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

6.當分式$\frac{x+2}{x-1}$的值為0時,字母x的取值應為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.計算
(1)-$\frac{3}{4}$ab2c•(-2a2b)2÷6a2b3
(2)4(x+1)2-(2x-5)(2x+5).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.下列判斷正確的是(填序號)(2)(5).
(1)命題“兩條直線被第三條直線所截,同位角相等”是真命題.
(2)實數(shù)和數(shù)軸上的點一一對應.
(3)無理數(shù)是開方開不盡的數(shù).
(4)過一點可以而且只可以畫一條直線與已知直線平行.
(5)算術平方根等于本身的數(shù)是1和0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

11.在平面直角坐標系中,有A(2,-1)、B(-1,-2)、C(2,1)、D(-2,1)四點.其中,關于原點對稱的兩點為( 。
A.點A和點BB.點B和點CC.點C和點DD.點D和點A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

1.如圖1,△ABC中,AD是∠BAC的平分線,若AB=AC+CD,那么∠ACB與∠ABC有怎樣的數(shù)量關系?小明通過觀察分析,形成了如下解題思路:

如圖2,延長AC到E,使CE=CD,連接DE.由AB=AC+CD,可得AE=AB.又因為AD是∠BAC的平分線,可得△ABD≌△AED,進一步分析就可以得到∠ACB與∠ABC的數(shù)量關系.
(1)判定△ABD與△AED全等的依據是SAS;
(2)∠ACB與∠ABC的數(shù)量關系為:∠ACB=2∠ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.如圖甲,A、B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位的速度勻速運動,回到點A運動結束.設運動時間為x,弦BP的長度為y,那么如圖乙圖象中可能表示y與x的函數(shù)關系的是( 。
A.B.C.①或③D.②或④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

5.單項式-$\frac{{x}^{2}{z}^{3}}{2}$是5次單項式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,在平面直角坐標系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,-1),反比例函數(shù)y=$\frac{k}{x}$(x>0)的圖象經過線段MN的中點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y=$\frac{k}{x}$(x>0)的圖象上取不同于點A的一點B,作BC⊥x軸于點C,連接OB交直線l于點P,若△ONP的面積是△OBC的面積的3倍,求點P的坐標.

查看答案和解析>>

同步練習冊答案