【題目】如圖,過拋物線yax2+bx上一點A4,﹣2)作x軸的平行線,交拋物線于另一點B,點C在直線AB上,拋物線交x軸正半軸于點D2,0),點B與點E關于直線CD對稱.

1)求拋物線的表達式;

2)①若點E落在拋物線的對稱軸上,且在x軸下方時,求點C的坐標.②AE最小值為   

【答案】1y=﹣x2+x;(2)①C的坐標為(,﹣2),②AE的最小值為22,見解析.

【解析】

1)將點A4,-2)、D20)代入求出a、b的值即可得;
2)①連接BD、DE,作EPAB,并延長交ODQ,先求出B-2-2)、BD=2,設Cm-2),知BC=CE=m+2,DE=BD=2,由QD=1,PQ=2PE=QE-PQ=,由PC=1-mPC2+PE2=CE2可得m的值,從而得出答案;

②由DB=DE=2,知點E在以D為圓心、2長為半徑的⊙D上,連接DA,并延長交⊙D于點E′,此時AE′取得最小值,根據(jù)AE的最小值為DE-DA可得答案.

解:(1)將點A4,﹣2)、D2,0)代入,

得:,

解得:,

∴拋物線的表達式為y=﹣x2+x

2)①如圖1,連接BD、DE,作EPAB,并延長交ODQ,

∵拋物線的對稱軸為直線x=﹣1,

∴點A4,﹣2)關于對稱軸對稱的點B坐標為(﹣2,﹣2),

BD2,

Cm,﹣2),

BCCEm+2,DEBD2

QD1,PQ2,

PEQEPQ11

PC1m,

∴由PC2+PE2CE2可得(1m2+12=(m+22,

解得m

∴點C的坐標為(,﹣2);

②如圖2,

DBDE2,

∴點E在以D為圓心、2長為半徑的⊙D上,

連接DA,并延長交⊙D于點E′,此時AE′取得最小值,

DA2,

AE的最小值為DEDA22,

故答案為:22

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】合肥地鐵一號線與地鐵二號線在A站交匯,且兩條地鐵線互相垂直如圖所示,學校P到地鐵一號線B站的距離PB2km,到地鐵二號線C站的距離PC4km,PB與一號線的夾角為30°,PC與二號線的夾角為60°.求學校PA站的距離(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】林城市對教師試卷講評課中學生參與的深度和廣度進行評價,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息解答下列問題:

1)在這次評價中,一共抽查了   名學生;

2)請將條形統(tǒng)計圖補充完整;

3)如果全市有16萬名初中學生,那么在試卷講評課中,獨立思考的學生約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了測量山坡上的電線桿PQ的高度,某數(shù)學活動小組的同學們帶上自制的測傾器和皮尺來到山腳下,他們在A處測得信號塔頂端P的仰角是45°,信號塔底端點Q的仰角為30°,沿水平地面向前走100米到B,測得信號塔頂端P的仰角是60°,求信號塔PQ得高度。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)分別與x軸,y軸交于AB兩點,與反比例函數(shù)交于C、D兩點,若CD5AB,則k的值是( 。

A.B.6C.8D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC上一點,BFAEDC于點F,若AB5,BE2,則AF____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2011山東濟南,279分)如圖,矩形OABC中,點O為原點,點A的坐標為(08),點C的坐標為(60).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S

S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;

S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】愛好數(shù)學的甲、乙兩個同學做了一個數(shù)字游戲:拿出三張正面寫有數(shù)字﹣1,0,1且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機抽取一張,將所得數(shù)字作為p的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機抽取一張,將所得數(shù)字作為q值,兩次結(jié)果記為

1)請你幫他們用樹狀圖或列表法表示所有可能出現(xiàn)的結(jié)果;

2)求滿足關于x的方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABO的直徑,ACO的弦,過O點作OFABO于點D,交AC于點E,交BC的延長線于點F,點GEF的中點,連接CG

(1)判斷CGO的位置關系,并說明理由;

(2)求證:2OB2BCBF;

(3)如圖2,當∠DCE2F,CE3DG2.5時,求DE的長.

查看答案和解析>>

同步練習冊答案