【題目】如圖,二次函數(shù)與一次函數(shù)交于頂點和點兩點,一次函數(shù)與軸交于點.
(1)求二次函數(shù)和一次函數(shù)的解析式;
(2)軸上存在點使的面積為9,求點的坐標.
【答案】(1);(2)或.
【解析】
(1)先把點代入拋物線的頂點式,用待定系數(shù)法求解析式,再由A、B坐標求出一次函數(shù)的解析式;
(2)根據(jù)的面積=S△PCA-S△PBC=PC×(4-2)=9即可解答.
(1)解:設y1=a(x+4)2-1,把點代入解析式得,
3= a(-2+4)2-1,解得:a=1
∴;
設y2=kx+b,把和點代入得
解得:
所以,一次函數(shù)解析式為y=2x+7;
(2)∵、,點P在軸上.
∴點A、B到x軸的距離分別是4、2,
∴的面積=S△PCA-S△PBC=PC×(4-2)=9
解得PC=9,
∵一次函數(shù)解析式為y=2x+7與x軸交于點C
∴C(0,7),OC=7,又∵PC=9
∴OP=7+9=16或OP=9-7=2
∴或P(0,16)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點時測得釣魚島A在船的北偏東60°方向,船以50海里/時的速度繼續(xù)航行2小時后到達C點,此時釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,∠CBD=30°,則DF的長為____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB,標桿CD和EF在同一豎直平面內(nèi),從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,求建筑物的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點E是菱形ABCD邊BC上的中點,∠ABC=30°,P是對角線BD上一點,且PC+PE=.則菱形ABCD面積的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線C:y=x2+3x-10平移到C′.若兩條拋物線C,C′關于直線x=1對稱,則下列平移方法中正確的是( )
A. 將拋物線C向右平移個單位 B. 將拋物線C向右平移3個單位
C. 將拋物線C向右平移5個單位 D. 將拋物線C向右平移6個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com