【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

【答案】B
【解析】解:過A作AE⊥x軸,過B作BF⊥x軸,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO= = ,
設(shè)AB= ,則OA=1,根據(jù)勾股定理得:BO= ,
∴OB:OA= :1,
∴SBFO:SOEA=2:1,
∵A在反比例函數(shù)y= 上,
∴SOEA=1,
∴SBFO=2,
則k=﹣4.
故選:B.

過A作AE⊥x軸,過B作BF⊥x軸,由OA與OB垂直,再利用鄰補(bǔ)角定義得到一對角互余,再由直角三角形BOF中的兩銳角互余,利用同角的余角相等得到一對角相等,又一對直角相等,利用兩對對應(yīng)角相等的三角形相似得到三角形BOF與三角形OEA相似,在直角三角形AOB中,由銳角三角函數(shù)定義,根據(jù)cos∠BAO的值,設(shè)出AB與OA,利用勾股定理表示出OB,求出OB與OA的比值,即為相似比,根據(jù)面積之比等于相似比的平方,求出兩三角形面積之比,由A在反比例函數(shù)y= 上,利用反比例函數(shù)比例系數(shù)的幾何意義求出三角形AOE的面積,進(jìn)而確定出BOF的面積,再利用k的集合意義即可求出k的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC,給出下列結(jié)論:①∠DAC=∠ABC;②AD=CB;③點(diǎn)P是△ACQ的外心;④AC2=AEAB;⑤CB∥GD,其中正確的結(jié)論是(
A.①③⑤
B.②④⑤
C.①②⑤
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)點(diǎn)A關(guān)于點(diǎn)O中心對稱的點(diǎn)P的坐標(biāo)為
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點(diǎn)A1、B1的坐標(biāo)分別為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADCBDE均為等腰三角形,∠CAD=DBE,AC=AD,BD=BE,連接CE,點(diǎn)GCE的中點(diǎn),過點(diǎn)EAC的平行線與線段AG延長線交于點(diǎn)F.

(1)當(dāng)A,D,B三點(diǎn)在同一直線上時(如圖1),求證:GAF的中點(diǎn);

(2)將圖1BDE繞點(diǎn)D旋轉(zhuǎn)到圖2位置時,點(diǎn)A,D,G,F(xiàn)在同一直線上,點(diǎn)H在線段AF的延長線上,且EF=EH,連接AB,BH,試判斷ABH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 m≥2,n≥2,且 m、n 均為正整數(shù),如果將 mn 進(jìn)行如圖所示的分解,那么下列四個敘述中正確的有(

①在 25 分解結(jié)果是 1517兩個數(shù)

②在 42 分解結(jié)果中最大的數(shù)是9.

③若 m3 分解結(jié)果中最小的數(shù)是 23,則 m=5.

④若 3n 分解結(jié)果中最小的數(shù)是 79,則 n=5.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF

1)試說明AC=EF;

2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值,

12x2y[3xy2+2xy2+2x2y],其中x=y=2

2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2aba﹣6b﹣ab)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且

AOB=60°,反比例函數(shù)k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)FBC的中點(diǎn),且SAOF=12 時,OA的長為____.

查看答案和解析>>

同步練習(xí)冊答案