1.如圖1,已知線段AC∥y軸,點(diǎn)B在第一象限,且AO平分∠BAC,AB交y軸與G,連OB、OC.
(1)判斷△AOG的形狀,并予以證明;
(2)若點(diǎn)B、C關(guān)于y軸對(duì)稱,求證:?AG=GB;?AO⊥OB.
(3)在(2)的條件下,如圖2,點(diǎn)M為OA上一點(diǎn),且∠ACM=45°,連接CB交y軸于P點(diǎn),求證:OB=OM.

分析 (1)利用已知條件可證明∠GOA=∠GAO,由等腰三角形的判定可得AG=OG,所以△AOG是等腰三角形;
(2)由已知可得BK=KC,因?yàn)锳C∥y軸,可得GA=GB;根據(jù)等腰三角形的性質(zhì)得出∠GOB=∠GBO,∠AOG=∠OAG,所以∠AOG+∠BOG=∠OAG+∠OBG,即∠AOB=∠OAG+∠OBG,即可求得∠AOB=90°;
(3)先證得BM是∠ABC的平分線,設(shè)∠OBC=x,則x+∠POB=90°,而∠POA+∠POB=∠AOB=90°,求得x=∠POA,進(jìn)一步證得x=∠GAM.根據(jù)∠OMB=∠GAM+∠ABM=x+∠ABM=x+∠PBM=∠MBO,即可證得結(jié)論.

解答 解:(1)等腰三角形,
∵AC∥y軸,
∴∠OAC=∠AOG,
∵∠OAC=∠OAG,
∴∠AOG=∠OAG,
∴AG=OG,
∴△AOG是等腰三角形;
(2)如圖1,設(shè)BC交y軸于K,
∵點(diǎn)B、C關(guān)于y軸對(duì)稱,
∴CK=BK,
∵AC∥y軸,
∴AG=BG,
∵AG=OG,
∴OG=BG,
∴∠GOB=∠GBO,
∵∠AOG=∠OAG,
∴∠AOG+∠BOG=∠OAG+∠OBG,即∠AOB=∠OAG+∠OBG,
∴∠AOB=90°
∴AO⊥BO.
(3)如圖2,∵∠ACM=45°,∠ACB=90°,
∴CM是∠ACB的平分線,
∵AM是∠BAC的平分線,
∴BM平分∠ABC,
設(shè)∠OBC=x,則x+∠POB=90°,而∠POA+∠POB=∠AOB=90°,
∴x=∠POA.
∵∠AOG=∠OAG,
∴x=∠GAM.
∴∠OMB=∠GAM+∠ABM
=x+∠ABM
=x+∠PBM
=∠MBO.
∴OB=OM.

點(diǎn)評(píng) 本題考查了角平分線的性質(zhì)、軸對(duì)稱的性質(zhì)、等腰三角形的判定和性質(zhì)、三角形的內(nèi)角和定理,題目的綜合性強(qiáng),解題的關(guān)鍵是正確添加輔助線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.若關(guān)于x的分式方程$\frac{m-1}{x-1}$=2的解為非負(fù)數(shù),則m的取值范圍是m≥-1且m≠1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法中正確的是( 。
A.兩條射線構(gòu)成的圖形叫做角B.連接兩點(diǎn)的線段叫做兩點(diǎn)間的距離
C.38.15°=38°9′D.若AC=BC,則點(diǎn)C是線段的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知甲倉庫儲(chǔ)糧37噸,乙倉庫儲(chǔ)糧17噸,現(xiàn)調(diào)糧食15噸給兩倉庫,則應(yīng)分配給兩倉庫各多少噸,才能使得甲倉庫的糧食是乙倉庫的兩倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,對(duì)稱軸平行于y軸的拋物線與x軸交于(1,0),(3,0)兩點(diǎn),則它的對(duì)稱軸為直線x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.某市城市居民用電收費(fèi)方式有以下兩種:
(甲)普通電價(jià):全天0.53元/度;
(乙)峰谷電價(jià):峰時(shí)(早8:00-晚21:00)0.56元/度;谷時(shí)(晚21:00-早8:00)0.36元/度.
估計(jì)小明家下月總用電量為200度.
(1)若其中峰時(shí)電量為50度,則小明家按照哪種方式付電費(fèi)比較合適?能省多少元?
(2)到下月付費(fèi)時(shí),小明發(fā)現(xiàn)那月總用電量為200度,用峰谷電費(fèi)付費(fèi)方式比普通電價(jià)付費(fèi)方式省了14元,求那月的峰時(shí)電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.(1)計(jì)算:20160+$\sqrt{4}$+$\root{3}{-27}$;
(2)求x的值:4x2=100.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.閱讀理解
∵$\sqrt{4}$<$\sqrt{5}$<$\sqrt{9}$,即2<$\sqrt{5}$<3.
∴1<$\sqrt{5}$-1<2
∴$\sqrt{5}$-1的整數(shù)部分為1.
∴$\sqrt{5}$-1的小數(shù)部分為$\sqrt{5}$-2.
解決問題:
已知a是$\sqrt{17}$-3的整數(shù)部分,b是$\sqrt{17}$-3的小數(shù)部分,求(-a)3+(b+4)2的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.求代數(shù)式$\sqrt{{x}^{2}+2x+2}$+$\sqrt{{x}^{2}-10x+34}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案