【題目】如圖,已知中,,,,

(1)請(qǐng)說明的理由;

(2)可以經(jīng)過圖形的變換得到,請(qǐng)你描述這個(gè)變換;

(3)的度數(shù).

【答案】(1)見解析 (2)繞點(diǎn)順時(shí)針旋轉(zhuǎn),可以得到 (3)

【解析】

(1)先利用已知條件∠B=E,AB=AE,BC=EF,利用SAS可證ABC≌△AEF,那么就有∠C=F,BAC=EAF,那么∠BAC-PAF=EAF-PAF,即有∠BAE=CAF=25°;

(2)通過觀察可知ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)25°,可以得到AEF;

(3)由(1)知∠C=F=57°,BAE=CAF=25°,而∠AMBACM的外角,根據(jù)三角形外角的性質(zhì)可求∠AMB.

,

,

,,

,

;

通過觀察可知繞點(diǎn)順時(shí)針旋轉(zhuǎn),可以得到;

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球試驗(yàn),每次摸出一個(gè)球,放回、攪勻,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù),

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.230

0.231

0.300

0.260

0.254

袋中白球的個(gè)數(shù)約為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長為1,當(dāng)t為何值時(shí),1的長最大,并求最大值;(先根據(jù)題目畫圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB為⊙O的一條弦,以AB為直角邊作等腰直角ABC,直線AC恰好是⊙O的切線,點(diǎn)D為⊙O上的一點(diǎn),連接DA,DB,DC,若DA3,DB4,則DC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面上,對(duì)于給定的線段AB和點(diǎn)C,若平面上的點(diǎn)P(可以與點(diǎn)C重合)滿足,∠APB=∠ACB.則稱點(diǎn)P為點(diǎn)C關(guān)于直線AB的聯(lián)絡(luò)點(diǎn).

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A2,0),B0,2),C(﹣2,0).

1)在P122),P1,0),R1+1)三個(gè)點(diǎn)中,是點(diǎn)O關(guān)于線段AB的聯(lián)絡(luò)點(diǎn)的是   

2)若點(diǎn)P既是點(diǎn)O關(guān)于線段AB的聯(lián)絡(luò)點(diǎn),同時(shí)又是點(diǎn)B關(guān)于線段OA的聯(lián)絡(luò)點(diǎn),求點(diǎn)P的橫坐標(biāo)m的取值范圍;

3)直線yx+bb0)與x軸,y軸分交于點(diǎn)M,N,若在線段BC上存在點(diǎn)N關(guān)于線段OM的聯(lián)絡(luò)點(diǎn),直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:

請(qǐng)根據(jù)上面的信息,解決問題:

1)設(shè)AB=x米(x0),試用含x的代數(shù)式表示BC的長;

2)請(qǐng)你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:若在一個(gè)兩位正整數(shù)N的個(gè)位數(shù)字與十位數(shù)字之間添上數(shù)字6,組成一個(gè)新的三位數(shù),我們稱這個(gè)三位數(shù)為N至善數(shù),如34至善數(shù)為364”;若將一個(gè)兩位正整數(shù)M6后得到一個(gè)新數(shù),我們稱這個(gè)新數(shù)為M明德數(shù),如34明德數(shù)為40”

130至善數(shù)   ,明德數(shù)   

2)求證:對(duì)任意一個(gè)兩位正整數(shù)A,其至善數(shù)明德數(shù)之差能被9整除;

3)若一個(gè)兩位正整數(shù)B的明德數(shù)的各位數(shù)字之和是B的至善數(shù)各位數(shù)字之和的一半,求B的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,AC、DC為弦,ACD=60°,P為AB延長線上的點(diǎn),APD=30°.

(1)求證:DP是O的切線;

(2)若O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過AB的中點(diǎn)D.若⊙O的半徑為,AB=4,則BC的長是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案