【題目】四邊形的對角線,相交于點,下面四組條件

,;;

,;

其中能判定是正方形的條件有(

A. B. C. D.

【答案】D

【解析】

根據(jù)正方形的性質(zhì)與判定,(1)對角線相等的菱形是正方形,(2)對角線互相垂直的矩形是正方形,(3)對角線互相垂直平分且相等的四邊形是正方形,(4)一組鄰邊相等,有三個角是直角的四邊形是正方形,(5)一組鄰邊相等的矩形是正方形,(6)一組鄰邊相等且有一個角是直角的平行四邊形是正方形,(7)四邊均相等,對角線互相垂直平分且相等的四邊形是正方形(8)有一個角為直角的菱形是正方形,(9)既是菱形又是矩形的四邊形是正方形,逐個選項進行判斷即可得出答案.

(1)AO=CO,BO=DO;可判定四邊形ABCD是平行四邊形,不能判定它是正方形;

(2)AO=CO=BO=DO;可判定四邊形ABCD是矩形,不能判定它是正方形;

(3)AO=CO,BO=DO,可判定四邊形ABCD是平行四邊形,再有ACBD可判定它是菱形,不能判定它是正方形;

(4)AO=CO=BO=DO可判定四邊形ABCD是矩形,再有ACBD又可判定它是菱形,所以可以判定它是正方形.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,延長BCD,∠ABC和∠ACD的平分線相交于P

1)若∠A60°,則∠P   

2)請你用數(shù)學表達式歸納出∠P與∠A的關(guān)系:   

3)請說明你的結(jié)論(2)正確的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的二次函數(shù),這兩個二次函數(shù)的圖象中的一條與軸交于兩個不同的點.

試判斷哪個二次函數(shù)的圖象經(jīng)過兩點;

點坐標為,試求點坐標;

的條件下,對于經(jīng)過兩點的二次函數(shù),當取何值時,的值隨值的增大而減小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC10cm,BC8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標;

(3)在(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形的頂角為36°,則這個三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。

1)如圖1,寫出圖中所有的黃金三角形,并證明;

2)若 M為線段 BC上的點,過 M作直線MHAD H,分別交直線 AB,AC與點N,E,如圖 2,試寫出線段 BNCE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,菱形中,,中點,,,于點于點

求證:四邊形是矩形.

的度數(shù).

求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)是關(guān)于的二次函數(shù).

的值.

為何值時,該函數(shù)圖象的開口向下?

為何值時,該函數(shù)有最小值?

試說明函數(shù)圖象的增減性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線lm分別是ABCACBC的垂直平分線,lm分別交邊AB,BC于點D和點E.

(1)AB=10,則CDE的周長.

(2)若∠ACB=120°,求∠DCE的度數(shù).

查看答案和解析>>

同步練習冊答案