【題目】探究:已知二次函數(shù)經(jīng)過點(diǎn).
(1)求該函數(shù)的表達(dá)式;
(2)如圖所示,點(diǎn)是拋物線上在第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)的橫坐標(biāo)為,連接,,.
①求的面積關(guān)于的函數(shù)關(guān)系式;
②求的面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).
拓展:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,的坐標(biāo)為,若拋物線與線段有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出的取值范圍.
【答案】探究:(1);(2)① ,②的面積的最大值是,此時(shí)點(diǎn)的坐標(biāo)為,拓展:.
【解析】
(1)由待定系數(shù)法易求解析式;
(2)過點(diǎn)作于點(diǎn),交于點(diǎn).設(shè)點(diǎn)的坐標(biāo)為,由可得關(guān)于t的二次函數(shù),進(jìn)而可求最大值.
(3)根據(jù)拋物線與MN的位置關(guān)系可知當(dāng)拋物線經(jīng)過M點(diǎn)時(shí),a取最大值.
探究:(1)∵拋物線經(jīng)過點(diǎn),
∴,解得.
∴拋物線的表達(dá)式為.
(2)①過點(diǎn)作于點(diǎn),交于點(diǎn).
設(shè)直線的解析式為,
將、代入,
,解得:,
∴直線的解析式為.
∵點(diǎn)在拋物線上,點(diǎn)在直線上,
∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
∴ ,
∴ .
②∵,
∴當(dāng)時(shí),,
當(dāng)時(shí),.
∴的面積的最大值是,此時(shí)點(diǎn)的坐標(biāo)為.
[拓展]:拋物線y=ax22x+3(a<0),當(dāng)x=1時(shí),y=a-2+3=a+1<3,故拋物線右邊一定與MN有交點(diǎn),
當(dāng)x=-1,y=a+2+3=a+5,在M點(diǎn)或下方時(shí),拋物線左邊邊一定與MN有交點(diǎn),
即a+5≤3;
∴;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),拋物線交x軸的負(fù)半軸于點(diǎn),交x軸的正半軸于點(diǎn),交y軸的負(fù)半軸于點(diǎn),且.
(1)如圖,求a的值
(2)如圖,點(diǎn)在第一象限的拋物線上,連接,過點(diǎn)作軸,交直線于點(diǎn),連接與交于點(diǎn),若,求點(diǎn)的坐標(biāo)及的值;
(3)如圖,在(2)的條件下,點(diǎn)在第一象限的拋物線上,過點(diǎn)作的垂線,交x軸于點(diǎn),點(diǎn)在軸上(點(diǎn)在點(diǎn)的左側(cè)),,點(diǎn)在直線上,連接.若EP=OG,∠PEF+∠G=45°,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織八年級(jí)1000名學(xué)生參加漢字聽寫大賽.為了解學(xué)生整體聽寫能力,賽后隨機(jī)抽查了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì)分析,并制作成圖表:
組別 | 分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
一 | 50.5~60.5 | 16 | 0.08 |
二 | 60.5~70.5 | 30 | 0.15 |
三 | 70.5~80.5 | m | 0.25 |
四 | 80.5~90.5 | 80 | n |
五 | 90.5~100.5 | 24 | 0.12 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列可題:
(1)這次隨機(jī)抽查了______名學(xué)生,表中的數(shù)m=______,n=______;此樣本中成績(jī)的中位數(shù)落在第______組內(nèi);若繪制扇形統(tǒng)計(jì)圖,則在修中“第三組”所對(duì)應(yīng)扇形的圓心角的度數(shù)是______
(2)補(bǔ)全頻數(shù)直方圖;
(3)若成績(jī)超過80分為優(yōu)秀,請(qǐng)你估計(jì)該校八年級(jí)學(xué)生中漢字聽寫能力優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知垂直平分,垂足為,與相交于點(diǎn),連接.
求證:.
(2)如圖2,在中,,為的中點(diǎn).
①用直尺和圓規(guī)在邊上求作點(diǎn),使得(保留作圖痕跡,不要求寫作法);
②在①的條件下,如果,,P為MN中點(diǎn),求MQ的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】修建隧道可以方便出行.如圖:,兩地被大山阻隔,由地到地需要爬坡到山頂地,再下坡到地.若打通穿山隧道,建成直達(dá),兩地的公路,可以縮短從地到地的路程.已知:從到坡面的坡度,從到坡面的坡角,公里.
(1)求隧道打通后從到的總路程是多少公里?(結(jié)果保留根號(hào))
(2)求隧道打通后與打通前相比,從地到地的路程約縮短多少公里?(結(jié)果精確到0.01)(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中, , ,將矩形沿直線EF折疊.使得點(diǎn)A恰好落在BC邊上的點(diǎn)G處,且點(diǎn)E、F分別在邊AB、AD上(含端點(diǎn)),連接CF.
(1)當(dāng) 時(shí),求AE的長(zhǎng);
(2)當(dāng)AF取得最小值時(shí),求折痕EF的長(zhǎng);
(3)連接CF,當(dāng) 是以CG為底的等腰三角形時(shí),直接寫出BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某攔河壩橫截面原設(shè)計(jì)方案為梯形ABCD,其中AD∥BC,∠ABC=72°,為了提高攔河壩的安全性,現(xiàn)將壩頂寬度水平縮短10m,壩底寬度水平增加4m,使∠EFC=45°,請(qǐng)你計(jì)算這個(gè)攔河大壩的高度.(參考數(shù)據(jù):sin72°≈,cos72°≈,tan72°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,旅游已成為人們的一種生活時(shí)尚.為 開發(fā)新的旅游項(xiàng)目,我市對(duì)某山區(qū)進(jìn)行調(diào)查,發(fā)現(xiàn)一瀑布.為測(cè)量它的高度,測(cè) 量人員在瀑布的對(duì)面山上 D 點(diǎn)處測(cè)得瀑布頂端 A 點(diǎn)的仰角是 30°,測(cè)得瀑布底端 B 點(diǎn)的俯角是 10°,AB 與水平面垂直.又在瀑布下的水平面測(cè)得 CG=27m, GF=17.6m(注:C、G、F 三點(diǎn)在同一直線上,CF⊥AB 于點(diǎn) F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(參考數(shù)據(jù):≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個(gè)試驗(yàn)田進(jìn)行試驗(yàn),每個(gè)試驗(yàn)田播種二十粒種子,農(nóng)業(yè)專家將每個(gè)試驗(yàn)田成活的種子個(gè)數(shù)統(tǒng)計(jì)如條形統(tǒng)計(jì)圖,如圖所示,下面有四個(gè)推斷:
①甲種作物受環(huán)境影響最小;②乙種作物平均成活率最高;
③丙種作物最適合播種在山腰;
④如果每種作物只能在一個(gè)地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.其中合理的是( 。
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com