5.已知$\root{3}{1-2x}$,$\root{3}{3y-2}$互為相反數(shù),且y≠0,求代數(shù)式$\frac{1+2x}{y}$的值.

分析 已知$\root{3}{1-2x}$,$\root{3}{3y-2}$互為相反數(shù),則1-2x和3y-2互為相反數(shù),把所得式子變形即可求解.

解答 解:根據(jù)題意得:(1-2x)+(3y-2)=0,
即3y-2x=1,2x+1=3y,
則$\frac{1+2x}{y}$=3.

點(diǎn)評(píng) 本題考查了立方根的性質(zhì),理解1-2x和3y-2互為相反數(shù)是本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.在下列條件中:①∠A=∠C-∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°-∠B,④∠B-∠C=90°中,能確定△ABC是直角三角形的條件有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.若分式方程$\frac{ax+1}{2x-1}$=1有解,則a的值是( 。
A.a≠-2B.a≠0C.a≠2且a≠-2D.a≠0或a≠-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的方程x2-2011x+m-3=0的一個(gè)根與關(guān)于x的方程x2-2011x-m+3=0的一個(gè)根互為相反數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.若三角形的三邊a,b,c滿足a:b:c=1:1:$\sqrt{2}$,則該三角形的三個(gè)內(nèi)角的度分別為45°,45°,90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.分式$\frac{a^2+3a+2}{-a^2+2a+3}$的值能等于$\frac{1}{4}$嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.下列方程組中是二元一次萬程組的是( 。
A.$\left\{\begin{array}{l}{xy=1}\\{x+y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{5x-2y=1}\\{\frac{1}{x}+y=3}\end{array}\right.$C.$\left\{\begin{array}{l}{2x+z=0}\\{3x-y=\frac{1}{5}}\end{array}\right.$D.$\left\{\begin{array}{l}{x+\frac{y}{2}=5}\\{\frac{x}{2}+\frac{y}{3}=7}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l及位于其兩側(cè)的兩點(diǎn)A,B,如圖
(1)在圖①中的直線l上求一點(diǎn)P,使PA=PB;
(2)在圖②中的直線l上求一點(diǎn)Q,使直線l平分∠AQB;
(3)能否在直線l上找一點(diǎn),使該點(diǎn)到點(diǎn)A,B的距離之差的絕對(duì)值最大?若能,直接指出該點(diǎn)的位置,若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,直角△ACD中,B為AD延長(zhǎng)線上一點(diǎn),且滿足AB=CD,在CD上的一點(diǎn)E滿足DE=DB,連接BE,F(xiàn)為BE中點(diǎn),延長(zhǎng)AF與過B點(diǎn)的DC的平行線交于點(diǎn)G,連接CG,求證:∠CAG=45°,AD+BG=CG.

查看答案和解析>>

同步練習(xí)冊(cè)答案