【題目】如圖,順次連接圓內(nèi)接矩形各邊的中點,得到菱形ABCD,若BD=8,DF=4,則菱形ABCD的邊長為多少?
【答案】【解答】如圖,連接OM,
根據(jù)菱形的對角線互相垂直平分,得OD=4,即圓的半徑是8,
在直角△AOM中,OM=8,AM=4
根據(jù)勾股定理,得OA= ,
在直角△AOD中,根據(jù)勾股定理得到:AD= =8
即菱形的邊長是8.
【解析】根據(jù)菱形的性質(zhì)和勾股定理求解.綜合運用了菱形的性質(zhì)以及勾股定理.
【考點精析】掌握勾股定理的概念和菱形的性質(zhì)是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D
(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,求PB+PD的最小值;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加學(xué)校的“我愛古詩詞”知識競賽,英英所在班級組織了古詩詞知識測試,并將全班同學(xué)的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計.以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.
請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
(1)求出a、b、x、y的值;
(2)若要從小明、小敏等五位成績優(yōu)秀的同學(xué)中隨機選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學(xué)請用A、B、C、D、E表示,其中小明為A,小敏為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品的進價為160元,出售時的標價為240元,后來由于該商品積壓,商店準備打折出售,但要保持利潤不低于5%,則至多可打( )
A.6折
B.7折
C.8折
D.9折
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在4×4的正方形(每個小正方形的邊長均為1)網(wǎng)格中,以A為頂點,其他三個頂點都在格點(網(wǎng)格的交點)上,且面積為2的平行四邊形的共有( 。﹤.
A.10
B.12
C.14
D.23
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五名學(xué)生一分鐘跳繩的次數(shù)分別為180,195,175,185,190,該組數(shù)據(jù)的中位數(shù)是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com