如圖,直角坐標(biāo)系內(nèi)的梯形AOBC(O為原點(diǎn))中AC∥OB,AO⊥OB,AC=1,OA=2,OB=5.
(1)求經(jīng)過(guò)O,C,B三點(diǎn)的拋物線的解析式;
(2)延長(zhǎng)AC交拋物線于點(diǎn)D,求線段CD的長(zhǎng);
(3)在(2)的條件下,動(dòng)點(diǎn)P、Q分別從O、D同時(shí)出發(fā),都以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)P沿OB由O向B運(yùn)動(dòng),點(diǎn)Q沿DC由D由C運(yùn)動(dòng)(其中一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)后,另一個(gè)點(diǎn)運(yùn)動(dòng)也隨之停止),過(guò)點(diǎn)Q作QM⊥CD交BC于點(diǎn)M,連接PM.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)你探索:當(dāng)時(shí)間t為何值時(shí),△PMB中有一個(gè)角是直角.

【答案】分析:(1)由于拋物線經(jīng)過(guò)原點(diǎn),因此可以設(shè)解析式為y=ax2+bx,再把B、C兩點(diǎn)的坐標(biāo)代入拋物線即可求出二次函數(shù)的解析式.
(2)本題可以根據(jù)C、D兩點(diǎn)的縱坐標(biāo)相等,求出D點(diǎn)的橫坐標(biāo),則C、D兩點(diǎn)之差即為所求.
(3)由題意可知,△PMB有一個(gè)角是直角有兩種情況①∠MPB=90°時(shí),此時(shí)Q、M、P三點(diǎn)在一條直線上,根據(jù)四邊形AOPQ為矩形,求出t;②∠PMB=90°時(shí),延長(zhǎng)QM交X軸于點(diǎn)N,△PNM∽△MNB,△CQM∽△BNM,求出t.
解答:解:(1)由題意知,O(0,0),C(1,2),B(5,0).
設(shè)過(guò)O、C、B三點(diǎn)的拋物線的解析式為y=ax2+bx,
將C、B點(diǎn)坐標(biāo)代入y=ax2+bx,得
可得


(2)當(dāng)y=2時(shí),則,
解得,x1=1,x2=4.
∴CD=4-1=3;

(3)延長(zhǎng)QM交x軸于點(diǎn)N,有MN⊥OB.
①當(dāng)點(diǎn)P與點(diǎn)N重合時(shí),有
MP⊥OB,則四邊形AOPQ是矩形.
∴AQ=OP即4-t=t
∴t=2.
②若MP⊥BM,則△PNM∽△MNB.
∴MN2=PN•BN.
∵CQ∥NB,
∴△CQM∽△BNM.
,
=,
則MN=
∵BN=1+t,PN=5-(1+t)-t=4-2t,
=(4-2t)(t+1).
解得,t1=-1(舍去),
綜合①,②知,當(dāng)t=2或時(shí),△PMB中有一個(gè)角是直角.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求二次函數(shù)解析式、在坐標(biāo)系中兩點(diǎn)間的距離,相似三角形等知識(shí).主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1.
(1)求BC、AP1的長(zhǎng);
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫(xiě)出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時(shí),則⊙P和⊙E的位置關(guān)系如何并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長(zhǎng);
(Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫(xiě)出自變量m的取值范圍;
(Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=
12
S梯形AOBC?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角坐標(biāo)系內(nèi)的梯形AOBC(O為原點(diǎn))中AC∥OB,AO⊥OB,AC=1,OA=2,OB=5.
(1)求經(jīng)過(guò)O,C,B三點(diǎn)的拋物線的解析式;
(2)延長(zhǎng)AC交拋物線于點(diǎn)D,求線段CD的長(zhǎng);
(3)在(2)的條件下,動(dòng)點(diǎn)P、Q分別從O、D同時(shí)出發(fā),都以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)P沿OB由O向B運(yùn)動(dòng),點(diǎn)Q沿DC由D由C運(yùn)動(dòng)(其中一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)后,另一個(gè)點(diǎn)運(yùn)動(dòng)也隨之停止),過(guò)點(diǎn)Q作QM⊥CD交BC于點(diǎn)M,連接PM.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)你探索:當(dāng)時(shí)間t為何值時(shí),△PMB中有一個(gè)角是直角.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問(wèn)的條件下,線段OC上是否存在一點(diǎn)M,過(guò)M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過(guò)D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=S梯形AOBC?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案