【題目】如圖,四邊形ABCD內(nèi)接于⊙O,ABC=60°,BD平分∠ADC.

(1)試說(shuō)明△ABC是等邊三角形;

(2)AD=2,DC=4,求四邊形ABCD的面積.

【答案】(1)見(jiàn)解析;(2)四邊形ABCD的面積為.

【解析】

1)據(jù)已知條件和圓周角定理即可得到結(jié)論;

2)過(guò)點(diǎn)A作AE⊥CD,過(guò)點(diǎn)B作BF⊥AC,得∠AED=90°,ADE=60°,∠DAE=30°,DE =1,,CE= 5,從而求出,再求出,即可求出結(jié)論.

解:(1)∵ 四邊形ABCD內(nèi)接于⊙O

∴ ∠ABC+∠ADC=180°

∵ ∠ABC=60°,∴ ∠ADC=120°

∵ DB平分∠ADC,∴ ∠ADB=∠CDB=60°

∴ ∠ACB=∠ADB=60°,∠BAC=∠CDB=60°

∴ ∠ABC=∠BCA=∠BAC

∴ △ABC是等邊三角形

⑵ 過(guò)點(diǎn)A作AE⊥CD,垂足為點(diǎn)E;

過(guò)點(diǎn)B作BF⊥AC,垂足為點(diǎn)F.

∴ ∠AED=90°

∵ ∠ADC=120° ∴ ∠ADE=60° ∴ ∠DAE=30°

∴ DE==1,

∵ CD=4

∴ CE=CD+DE=1+4=5

Rt△AEC中,∠AED=90°

∴ AC=

∵ △ABC是等邊三角形

∴ AB=BC=AC=

∴ AF=FC=

∴ 四邊形ABCD的面積=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,ABACAD是∠BAC的平分線,AE是∠BAC的外角平分線,EDABAC于點(diǎn)G,下列結(jié)論:①BDDC;②AEBC;③AEAG;④AGDE.正確的是_____(填寫(xiě)序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角尺如圖1所示放置,圖2是由它抽象出的幾何圖形,點(diǎn),在同一條直線上,連接

1)請(qǐng)找出圖2中與全等的三角形,并說(shuō)明理由(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

2)判斷線段是否垂直,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠A=∠B=30°,E,F AB 上,∠ECF=60°.

(1)畫(huà)出△BCF 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 120°后的△ACK;

(2)在(1)中,若 AE2+ EF2= BF2,求證 BF= CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,B30°OBC上一點(diǎn),以點(diǎn)O為圓心,OB長(zhǎng)為半徑作圓,恰好經(jīng)過(guò)點(diǎn)A,并與BC交于點(diǎn)D

1)求證:CA是⊙O的切線.

2)若AB2,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函y=kx+b的圖象經(jīng)過(guò)點(diǎn)A-2,4),且與正比例函數(shù)的圖象交于點(diǎn)Ba2).

1)求a的值及一次函數(shù)y=kx+b的解析式;

2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,且正比例函數(shù)y=-x的圖象向下平移mm0)個(gè)單位長(zhǎng)度后經(jīng)過(guò)點(diǎn)C,求m的值;

3)直接寫(xiě)出關(guān)于x的不等式0kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y1=x+4的圖象與函數(shù)y2= (x0)的圖象交于 A(a,1)、B(1,b)兩點(diǎn).

(1)aby2的函數(shù)關(guān)系式;

(2)觀察圖象,當(dāng)x0時(shí),比較y1y2大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)P在射線AC上,作點(diǎn)P關(guān)于直線CD的對(duì)稱點(diǎn)Q,作射線BQ交射線DC于點(diǎn)E,連接BP.

(1)當(dāng)點(diǎn)P在線段AC上時(shí),如圖1.

依題意補(bǔ)全圖1;

EQ=BP,則∠PBE的度數(shù)為   ,并證明;

(2)當(dāng)點(diǎn)P在線段AC的延長(zhǎng)線上時(shí),如圖2.若EQ=BP,正方形ABCD的邊長(zhǎng)為1,請(qǐng)寫(xiě)出求BE長(zhǎng)的思路.(可以不寫(xiě)出計(jì)算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,0)(點(diǎn)B在點(diǎn)A的右側(cè)),其對(duì)稱軸是x=3,該函數(shù)有最小值是﹣2.

(1)求二次函數(shù)解析式;

(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點(diǎn)E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案