如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠B=135°,則的長(zhǎng) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)y=ax2﹣2ax+3的圖象與x軸有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),則一元二次方程ax2﹣2ax+3=0的解為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在勞技課上,老師請(qǐng)同學(xué)們?cè)谝粡堥L(zhǎng)為9cm,寬為8cm的長(zhǎng)方形紙板上,剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求等腰三角形的一個(gè)頂點(diǎn)與長(zhǎng)方形的一個(gè)頂點(diǎn)重合,其余兩個(gè)頂點(diǎn)在長(zhǎng)方形的邊長(zhǎng)上).請(qǐng)你幫助同學(xué)們畫出圖形并計(jì)算出剪下的等腰三角形的面積.(求出所有可能的情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時(shí),平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( 。
A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為( 。
A.2.3 B.2.4 C.2.5 D.2.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,C、D是⊙O上的點(diǎn),∠CDB=20°,過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,則∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)邊長(zhǎng)為2a的正方形的中心A在直線l上,它的一組對(duì)邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運(yùn)動(dòng),點(diǎn)A、O間距離為d.
(1)如圖①,當(dāng)r<a時(shí),根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點(diǎn)個(gè)數(shù)填入下表:
d、a、r之間關(guān)系 | 公共點(diǎn)的個(gè)數(shù) |
d>a+r | |
d=a+r | |
a﹣r<d<a+r | |
d=a﹣r | |
d<a﹣r |
所以,當(dāng)r<a時(shí),⊙O與正方形的公共點(diǎn)的個(gè)數(shù)可能有 個(gè);
(2)如圖②,當(dāng)r=a時(shí),根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點(diǎn)個(gè)數(shù)填入下表:
d、a、r之間關(guān)系 | 公共點(diǎn)的個(gè)數(shù) |
d>a+r | |
d=a+r | |
a≤d<a+r | |
d<a |
所以,當(dāng)r=a時(shí),⊙O與正方形的公共點(diǎn)個(gè)數(shù)可能有 個(gè);
(3)如圖③,當(dāng)⊙O與正方形有5個(gè)公共點(diǎn)時(shí),試說明r=a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com