【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+4經(jīng)過(guò)A(﹣3,0)、B(4,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D在x軸的負(fù)半軸上,且BD=BC,有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線(xiàn)段CA以某一速度向點(diǎn)A移動(dòng).

(1)求該拋物線(xiàn)的解析式;
(2)若經(jīng)過(guò)t秒的移動(dòng),線(xiàn)段PQ被CD垂直平分,求此時(shí)t的值;
(3)該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使MQ+MA的值最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵拋物線(xiàn)y=ax2+bx+4經(jīng)過(guò)A(﹣3,0),B(4,0)兩點(diǎn),

,解得

∴所求拋物線(xiàn)的解析式為:y=﹣ x2+ x+4


(2)解:如圖1,依題意知AP=t,連接DQ,

∵A(﹣3,0),B(4,0),C(0,4),

∴AC=5,BC=4 ,AB=7.

∵BD=BC,

∴AD=AB﹣BD=7﹣4 ,

∵CD垂直平分PQ,

∴QD=DP,∠CDQ=∠CDP.

∵BD=BC,

∴∠DCB=∠CDB.

∴∠CDQ=∠DCB.

∴DQ∥BC.

∴△ADQ∽△ABC.

=

= ,

= ,

解得DP=4

∴AP=AD+DP=

∴線(xiàn)段PQ被CD垂直平分時(shí),t的值為 ;


(3)解:如圖2,設(shè)拋物線(xiàn)y=﹣ x2+ x+4的對(duì)稱(chēng)軸x= 與x軸交于點(diǎn)E.點(diǎn)A,B關(guān)于對(duì)稱(chēng)軸x= 對(duì)稱(chēng),連接BQ交該對(duì)稱(chēng)軸于點(diǎn)M.

則MQ+MA=MQ+MB,即MQ+MA=BQ,

∵當(dāng)BQ⊥AC時(shí),BQ最小,此時(shí),∠EBM=∠ACO,

∴tan∠EBM=tan∠ACO= ,

= ,

= ,解ME=

∴M( , ),即在拋物線(xiàn)y=﹣ x2+ x+4的對(duì)稱(chēng)軸上存在一點(diǎn)M( ),使得MQ+MA的值最小


【解析】(1)利用待定系數(shù)法,把A、B坐標(biāo)代入解析式,得到方程組,求出a、b即可;(2)由垂直平分線(xiàn)性質(zhì)和已知條件可得出△ADQ∽△ABC,對(duì)應(yīng)邊成比例,求出DP,進(jìn)而求出AP=AD+DP,即可求出時(shí)間t;(2)要求MQ+MA的值最小,可采用對(duì)稱(chēng)法,MQ+MA可轉(zhuǎn)化為MQ+MB,MQ+MA=BQ,即求BQ的最小值,當(dāng)BQ⊥AC時(shí),BQ最小,可利用tan∠EBM=tan∠ACO= ,列出等式,求出M縱坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點(diǎn),O是四邊形內(nèi)一點(diǎn),若S四邊形AEOH=3,S四邊形BFOE=4,S四邊形CGOF=5,則S四邊形DHOG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線(xiàn)y=﹣x(x﹣3)(0≤x≤3),記為C1 , 它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2 , 交x 軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3 , 交x 軸于點(diǎn)A3;…如此進(jìn)行下去,得到一條“波浪線(xiàn)”.若點(diǎn)P(37,m)在此“波浪線(xiàn)”上,則m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】裝飾公司為小明家設(shè)計(jì)電視背景墻時(shí)需要AB型板材若干塊,A型板材規(guī)格是abB型板材規(guī)格是bb.現(xiàn)只能購(gòu)得規(guī)格是150b的標(biāo)準(zhǔn)板材.(單位:cm

1)若設(shè)a60cm,b30cm.一張標(biāo)準(zhǔn)板材盡可能多的裁出A型、B型板材,共有下表三種裁法,下圖是裁法一的裁剪示意圖.

裁法一

裁法二

裁法三

A型板材塊數(shù)

1

2

0

B型板材塊數(shù)

3

m

n

則上表中, m=___________, n=__________

2)為了裝修的需要,小明家又購(gòu)買(mǎi)了若干C型板材,其規(guī)格是aa,并做成如下圖的背景墻.請(qǐng)寫(xiě)出下圖中所表示的等式:__________;

(3)若給定一個(gè)二次三項(xiàng)式2a25ab3b2,試用拼圖的方式將其因式分解.(請(qǐng)仿照(2)在幾何圖形中標(biāo)上有關(guān)數(shù)量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD90°,∠DCB90°,EF分別是BD、AC的中點(diǎn),

1)請(qǐng)你猜測(cè)EFAC的位置關(guān)系,并給予證明;

2)當(dāng)AC=8,BD=10時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明

如圖,點(diǎn)D,EF分別在AB,BC,AC上,且DE//AC,EF//AB

求證:∠A+B+C=180°

證明:∵DE//AC

∴∠1=________,∠4=________

又∵EF//AB,

∴∠3=________

2=________

∴∠2=A

又∵∠1+2+3=180°(平角定義)

∴∠A+B+C=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有3個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,放在一個(gè)不透明的口袋中,從口袋中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)后放回,再?gòu)目诖须S機(jī)摸出一個(gè)小球,記下標(biāo)號(hào).用畫(huà)樹(shù)狀圖(或列表)的方法,求兩次摸出的小球號(hào)碼恰好都大于1的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),若點(diǎn)的坐標(biāo)為,則稱(chēng)點(diǎn)是點(diǎn)的“演化點(diǎn)”.例如,點(diǎn)的“演化點(diǎn)”為,即.

(1)已知點(diǎn)的“演化點(diǎn)”是,則的坐標(biāo)為________;

(2)已知點(diǎn),且點(diǎn)的“演化點(diǎn)”是,則的面積__________;

(3)己知,,,且點(diǎn)的“演化點(diǎn)”為,當(dāng)時(shí),___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】白色污染( Whitepollution)是人們對(duì)難降解的塑料垃圾(多指塑料袋)污染環(huán)境現(xiàn)象的一種形象稱(chēng)謂.為了讓全校同學(xué)感受丟棄塑料袋對(duì)環(huán)境的影響,小彬隨機(jī)抽取某小區(qū)戶(hù)居民,記錄了這些家庭年某個(gè)月丟棄塑料袋的數(shù)量(單位:個(gè))

請(qǐng)根據(jù)上述數(shù)據(jù),解答以下問(wèn)題:

1)小彬按“組距為”列出了如下的頻數(shù)分布表(每組數(shù)據(jù)含最小值不含最大值),請(qǐng)將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)直方圖;

分組

劃記

頻數(shù)

_______

________

_______

________

合計(jì)

/

2)根據(jù)(1)中的直方圖可以看出,這戶(hù)居民家這個(gè)月丟棄塑料袋的個(gè)數(shù)在 組的家庭最多;(填分組序號(hào))

3)根據(jù)頻數(shù)分布表,小彬又畫(huà)出了如圖所示的扇形統(tǒng)計(jì)圖.請(qǐng)將統(tǒng)計(jì)圖中各組占總數(shù)的百分比填在圖中,并求出組對(duì)應(yīng)的扇形圓心角的度數(shù);

4)若該小區(qū)共有戶(hù)居民家庭,請(qǐng)你估計(jì)每月丟棄的塑料袋數(shù)量不小于個(gè)的家庭個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案