【題目】假設(shè)某商場地下停車場有5個出入口,每天早晨7點開始對外停車且此時車位空置率為80%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,8小時車庫恰好停滿;如果開放3個進口和2個出口,2小時車庫恰好停滿2019年元旦節(jié)期間,由于商場人數(shù)增多,早晨7點時的車位空置率變?yōu)?/span>60%,又因為車庫改造,只能開放2個進口和1個出口,則從早晨7點開始經(jīng)過_____小時車庫恰好停滿.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進了50m到達D處,此時遇到一斜坡,坡度i=1: ,沿著斜坡前進20米到達E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計算出該建筑物BC的高度.(取=1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):
①作∠BAC的平分線AD,交BC于點D;
②作AB邊的垂直平分線EF,分別交AD,AB于點E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,
其中,正確的結(jié)論是______.(寫出正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,對角線AC、BD相交于O,EF過點O,且AF⊥BC.
(1)求證:△BFO≌△DEO;
(2)若EF平分∠AEC,試判斷四邊形AFCE的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料并解決問題
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小而解決問題的策略般要進行一定的轉(zhuǎn)化,其中“求差法”就是常用的方法之一,所謂“求差法”:就是通過求差、變形,并利用差的符號來確定它們的大小,即要比較代數(shù)式的大小,只要求出它們的差,若,則;若,則.若,則,
請你用“求差法”解決以下問題
(1)若P=m2-2m-3,Q=m2-2m-1,比較的大小關(guān)系;
(2)制作某產(chǎn)品有兩種用料方案方案一:用3塊型鋼板,用7塊型鋼板;方案二:用2塊型鋼板,用8塊型鋼板;型鋼板的面積比型鋼板的面積大,設(shè)每塊型鋼板的面積為,每塊B型鋼板的面積為,從省料角度考慮,應選哪種方案?
(3)試比較圖1和圖2中兩個矩形周長、的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠帶城中掛,人在畫中游”,張平和王亮同學周末相約騎行于“步移景異,心曠神怡”的溫江田園綠道,他們從同一地方同時騎自行車出發(fā)(騎行過程中速度保持不變),最后同時到達了同一個地方. 如圖刻畫了他們離出發(fā)點的路程(單位:米)與出發(fā)后的時間(單位:分鐘)之間的關(guān)系. 已知張平中途兩次休息時間相同,三段騎行時間也分別相同;王亮中途休息一次,兩段騎行時間相同. 張平總的休息時間比王亮的休息時間多分鐘. 請結(jié)合圖中信息解答下列問題:
(1)在這次騎行活動中,他們的騎行路程都是多少米?
(2)求出張平和王亮的騎行速度分別是多少米/分鐘?
(3)求出王亮出發(fā)后第一次追上張平的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com