【題目】如圖,矩形ABCD中,AB=4,將矩形ABCD繞點(diǎn)C順時針旋轉(zhuǎn)90°,點(diǎn)B、D分別落在點(diǎn)B′,D′處,且點(diǎn)A,B′,D′在同一直線上,則tan∠DAD′

【答案】
【解析】解:由題意可得:AD∥CD′, 故△ADE∽△D′CB′,
= ,
設(shè)AD=x,則B′C=x,DB′=4﹣x,AB=CD′=4,
= ,
解得:x1=﹣2﹣2 (不合題意舍去),x2=﹣2+2
則DB′=6﹣2 ,
則tan∠DAD′= = =
所以答案是:
【考點(diǎn)精析】利用矩形的性質(zhì)和解直角三角形對題目進(jìn)行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別是(-3,0),(0,6),動點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個單位的速度運(yùn)動,同時動點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個單位的速度運(yùn)動.以CP,CO為鄰邊構(gòu)造PCOD.在線段OP延長線上一動點(diǎn)E,且滿足PEAO.

(1)當(dāng)點(diǎn)C在線段OB上運(yùn)動時,求證:四邊形ADEC為平行四邊形;

(2)當(dāng)點(diǎn)P運(yùn)動的時間為秒時,求此時四邊形ADEC的周長是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8,…頂點(diǎn)依次用A1,A2,A3,A4表示,則頂點(diǎn)A2018的坐標(biāo)是( 。

A. (504,﹣504) B. (﹣504,504) C. (505,﹣505) D. (﹣505,505)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題“兩直線平行,內(nèi)錯角的平分線互相平行”是真命題嗎?如果是,請給出證明;如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給下面命題的說理過程填寫依據(jù).

已知:如圖,直線AB,CD相交于點(diǎn)O,EOCD,垂足為O,OF平分BOD,對EOFBOC說明理由.

理由:因?yàn)?/span>AOCBOD( )

BOFBOD( ),

所以BOFAOC( )

因?yàn)?/span>AOC180°BOC( ),

所以BOF90°BOC.

因?yàn)?/span>EOCD( ),

所以COE90°( )

因?yàn)?/span>BOECOEBOC( ),

所以BOEBOCCOE.

所以BOEBOC90°( )

因?yàn)?/span>EOFBOEBOF( )

所以EOF(BOC90°)(90°BOC)

所以EOFBOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(1)班和(2)班分別有一男一女共4名學(xué)生報名參加學(xué)校文藝匯演主持人的選拔.
(1)若從報名的4名學(xué)生中隨機(jī)選1名,則所選的這名學(xué)生是女生的概率是
(2)若從報名的4名學(xué)生中隨機(jī)選2名,用樹狀圖或表格列出所有可能的情況,并求出這2名學(xué)生來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個動點(diǎn)(與C、D不重合),△ADE繞點(diǎn)A順時針旋轉(zhuǎn)120°,得到△ABE',連接EE'.

(1)如圖1,∠AEE'= °;

(2)如圖2,如果將直線AE繞點(diǎn)A順時針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過點(diǎn)EEM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;

(3)如圖3,在(2)的條件下,如果CE=2,AE=,ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10m=5,10n=3,則102m+3n=   

【答案】675.

【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,

故答案為:675.

點(diǎn)睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運(yùn)算方法,可得102m×103n=(10m2×(10n3,最后把10m=5,10n=2代入化簡后的算式,求出102m+3n的值是多少即可.

型】填空
結(jié)束】
18

【題目】計(jì)算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為CD上一點(diǎn),F(xiàn)為BC邊延長線上一點(diǎn),且CE=CF.BE與DF之間有怎樣的關(guān)系?請說明理由

查看答案和解析>>

同步練習(xí)冊答案