【題目】如圖,在正方形ABCD中,E為CD上一點,F(xiàn)為BC邊延長線上一點,且CE=CF.BE與DF之間有怎樣的關系?請說明理由

【答案】BE⊥DF,BE=DF

【解析】

試題根據(jù)正方形的性質(zhì)可得BC=DC∠BCD=∠DCF=90°,然后利用邊角邊證明△BCE△DCF全等,即可.

試題解析::四邊形ABCD是正方形,

∴BC=DC,∠BCD=∠DCF=90°,

△BCE△DCF中,

∵ BCDC,∠BCD∠DCF90°,CECF ,

∴△BCE≌△DCFSAS),

∴BE=DF

延長BEDF與點H

∵△BCE≌△DCF

∴∠EBC=∠FDC,

∵∠FDC+∠F=90°,

∴∠EBC+∠F=90°

∴∠BHF=90°,

∴BE⊥DF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,將矩形ABCD繞點C順時針旋轉90°,點B、D分別落在點B′,D′處,且點A,B′,D′在同一直線上,則tan∠DAD′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的同學調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,則表示“無所謂”的家長人數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=4,CD=3,ABC=ACB=ADC=45°,則BD的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P,Q分別是∠AOB的邊OA,OB上的點.

(1)過點POB的垂線,垂足為H;

(2)過點QOA的垂線,交OA于點C,連接PQ;

(3)線段QC的長度是點Q 的距離, 的長度是點P到直線OB的距離,因為直線外一點和直線上各點連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關系是 (用“<”號連接).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段ABCD的中點E,F之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,平行四邊形OABC的頂點A,B的坐標分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉得到平行四邊形OA′B′C′,當點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ab,a,b之間的距離為4,點P到直線a的距離為4,點Q到直線b的距離為2,PQ=2在直線a上有一動點A,直線b上有一動點B,滿足ABb,PA+AB+BQ最小,此時PA+BQ________

查看答案和解析>>

同步練習冊答案