【題目】如圖所示,拋物線經(jīng)過原點O與點A(6,0)兩點,過點A作ACx軸,交直線y=2x﹣2于點C,且直線y=2x﹣2與x軸交于點D.

(1)求拋物線的解析式,并求出點C和點D的坐標(biāo);

(2)求點A關(guān)于直線y=2x﹣2的對稱點A′的坐標(biāo),并判斷點A′是否在拋物線上,并說明理由;

(3)點P(x,y)是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

【答案】(1),C(6,10),D(1,0);(2)A′(﹣2,4),A′在拋物線上;(3)l=,(﹣2x6),l的最大值為

【解析】

試題分析:(1)把點O(0,0),A(6,0)代入,得,解得,拋物線解析式為

當(dāng)x=6時,y=2×6﹣2=10,當(dāng)y=0時,2x﹣2=0,解得x=1,點C坐標(biāo)(6,10),點D的坐標(biāo)(1,0);

(2)過點A′作AFx軸于點F,點D(1,0),A(6,0),可得AD=5,在RtACD中,CD==,點A與點A′關(guān)于直線y=2x﹣2對稱,∴∠AED=90°,S△ADC=×AE=×5×10,解得AE=,AA′=2AE=,DE==,∵∠AED=AFA′=90°,DAE=A′AF,∴△ADE∽△AA′F,,解得AF=4,A′F=8,OF=8﹣6=2,點A′坐標(biāo)為(﹣2,4),當(dāng)x=﹣2時,y=A′在拋物線上.

(3)點P在拋物線上,則點P(x,),設(shè)直線A′C的解析式為y=kx+b,直線A經(jīng)過A′(﹣2,4),C(6,10)兩點,,解得,直線A′C的解析式為,點Q在直線A′C上,PQAC,點Q的坐標(biāo)為(x,),PQAC,又點Q在點P上方,l=()﹣()=l與x的函數(shù)關(guān)系式為l=,(﹣2x6),l==當(dāng)x=時,l的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題:探索發(fā)現(xiàn)
(1)分解因式:①(1+x)+x(1+x)=()()=(2
②(1+x)+x(1+x) + x(1+x)2
③(1+x)+x(1+x) + x(1+x)2 + x(1+x)3
(2)根據(jù)(1)的規(guī)律,直接寫出多項式:(1+x) +x(1+x) + x(1+x)2+…+ x(1+x)2017分解因式的結(jié)果:。
(3)變式: = .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E,求證:

(1)∠1=∠BAD;

(2)BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ax=3,ay=2,則a2x+y等于( 。

A. 6 B. 7 C. 8 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1.2計算3.4分解因式)
(1)( +1)0﹣(﹣ 2+22
(2)(2a﹣3b)(﹣3b﹣2a)
(3)3m2﹣24m+48
(4)x3y﹣4xy.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;

(2)若點P為第一象限內(nèi)拋物線上的一點,設(shè)四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的弦,AB是直徑,且CD∥AB,連接AC、AD、OD,其中AC=CD,過點B的切線交CD的延長線于E.

(1)求證:DA平分∠CDO;

(2)若AB=12,求圖中陰影部分的周長之和(參考數(shù)據(jù):π=3.1,=1.4,=1.7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把△ABC向上平移4個的那位長度,再向右平移3個單位長度,得到△A′B′C′.

(1)在圖中畫出△A′B′C′;
(2)連接A′A、C′C,求四邊形A′AC′C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按一定規(guī)律排列的一列數(shù):21 , 22 , 23 , 25 , 28 , 213 , …,若x、y、z表示這列數(shù)中的連續(xù)三個數(shù),猜想x、y、z滿足的關(guān)系式是

查看答案和解析>>

同步練習(xí)冊答案