作圖與探究(不寫作法,保留作圖痕跡,并用0.5毫米黑色簽字筆描深痕跡)如圖,∠DBC和∠ECB是△ABC的兩個外角°

(1)用直尺和圓規(guī)分別作∠DBC和∠ECB的平分線,設(shè)它們相交于點P;

(2)過點P分別畫直線AB、AC、BC的垂線段PM、PN、PQ,垂足為M、N、Q;

(3)PM、PN、PQ相等嗎?(直接寫出結(jié)論,不需說明理由)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

操作探究自我操作:如圖1所示,點O為線段MN的中點,直線PQ與MN相交于點O,利用此圖,作一對以點O為對稱中心的全等△MOA和△NOB,并使A、B兩點都在直線PQ上.(只保留作圖痕跡,不寫作法)
精英家教網(wǎng)
(1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點E為BC的中點,∠BAE=∠EAF,AF與DC相交于點F,試探究線段AB與AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(2)探究2:如圖3所示,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與DF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關(guān)系為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•涼山州)在學(xué)習軸對稱的時候,老師讓同學(xué)們思考課本中的探究題.
如圖(1),要在燃氣管道l上修建一個泵站,分別向A、B兩鎮(zhèn)供氣.泵站修在管道的什么地方,可使所用的輸氣管線最短?
你可以在l上找?guī)讉點試一試,能發(fā)現(xiàn)什么規(guī)律?

聰明的小華通過獨立思考,很快得出了解決這個問題的正確辦法.他把管道l看成一條直線(圖(2)),問題就轉(zhuǎn)化為,要在直線l上找一點P,使AP與BP的和最。淖龇ㄊ沁@樣的:
①作點B關(guān)于直線l的對稱點B′.
②連接AB′交直線l于點P,則點P為所求.
請你參考小華的做法解決下列問題.如圖在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使△PDE得周長最。
(1)在圖中作出點P(保留作圖痕跡,不寫作法).
(2)請直接寫出△PDE周長的最小值:
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)七年級我們曾學(xué)過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最。
我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
(1)如圖3,正方形ABCD的邊長為2,E為BC的中點,P是BD上一動點.連接EP,CP,則EP+CP的最小值是
5
5

運用:
(2)如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是
(2,0)
(2,0)
;

操作:
(3)如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溧水縣一模)如圖,菱形ABCD中,對角線AC、BD交于點O,點P在對角線BD上運動(B、D兩點除外),線段PA繞點P順時針旋轉(zhuǎn)m°(0<m<180),得線段PQ.
(1)若點Q與點D重合,請在圖中用尺規(guī)作出點P所處的位置(不寫作法,保留作圖痕跡);
(2)若點Q落在邊CD上,且∠ADB=n°.
①探究m與n之間的數(shù)量關(guān)系;
②若點P在線段OB上運動,PQ=QD,求n的取值范圍.(在備用圖中探究)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•保定二模)定義:如果一條直線把一個面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.
如圖1,AD是△ABC的中線,則有S△ADC=S△ABD,所以直線AD就是△ABC的一條面積等分線.
探究:
(1)如圖2,梯形ABCD中,AB∥DC,連接AC,過B點作BE∥AC交DC的延長線于點E,連接AE,那么有S△AED=S梯形ABCD,請你給出這個結(jié)論成立的理由;
(2)在圖2中,過點A用尺規(guī)作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
類比:
(3)如圖3,四邊形ABCD中,AB與CD不平行,過點A能否畫出四邊形ABCD的面積等分線?若能,請畫出面積等分線,并給出證明;若不能,說明理由.

查看答案和解析>>

同步練習冊答案