【題目】已知:如圖,直線ab,點(diǎn)、分別在、上,且,.點(diǎn)點(diǎn)同時出發(fā),分別以1個單位/秒,2個單位/秒的速度,在直線b上沿相反方向運(yùn)動.設(shè)運(yùn)動秒后,得到△ACD.(友情提醒:本題的結(jié)果可用根號表示)

(1)當(dāng)秒時,點(diǎn)到直線的距離為

(2)若△ACD是直角三角形,t的值為 ;

(3)若△ACD是等腰三角形,求t的值.

【答案】(1);(2);(3)當(dāng)ts或s時,△ACD為等腰三角形.

【解析】

(1)根據(jù)點(diǎn)到直線的距離是垂線段的長,求解即可.

(2)因為ABb,所以∠ACB,ADB不可能等于90°,則只有∠CAD=90°,利用勾股定理列方程求解即可.

(3)因為BC<BD,所以 AC<AD, ACD是等腰三角形,則AD=CDAC=CD, 分情況列方程求解即可.

解:(1)由題意得,BD=2×6=12,AB=5,

ABb,

RtABD中,

= =13,

設(shè)B到直線AD的距離是h,

h=;

(2)ABb,

∴∠ACB,ADB不可能等于90°

ACD是直角三角形,

則∠CAD=90°,且BC=t,BD=2t,CD=BC+BD=3t,

,

,

RtACD中,

,

25+t2+25+4t2=9 t2,

t=.

(3)BC<BD,

AC<AD,

ACD是等腰三角形,則AD=CDAC=CD,

ADCD,

由題意得,BCt,BD=2t, ADCD=3t

RtABD中,AB=5, 由勾股定理可得:

BD2AB2AD2,即(2t)2+52=(3t)2 ,

t2=5,所以t ,

當(dāng)ACCD時,

同理,在RtABC中,AB=5,由勾股定理可得:

BC2AB2AC2,t2+52=(3t)2 ,

t2 ,所以t ,

綜上所述,當(dāng)tss時,△ACD為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】依法納稅是每個公民應(yīng)盡的義務(wù).新稅法規(guī)定:居民個人的綜合所得,以每一納稅月收入減去費(fèi)用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應(yīng)納稅所得額.已知李先生某月的個人應(yīng)納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應(yīng)納稅所得額分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為8,點(diǎn)E為正方形邊上一點(diǎn),連接BE,且BE=10,則AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)ab,c滿足a+b=ab=c,有下列結(jié)論:①若c0,則;②若a=3,則b+c=9;③若c0,則(1-a)(1-b)=;④若c=5,則a2+b2=15. 其中正確的是( )

A. ①③④ B. ①②④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),∠COD=90°,OE、OF分別是∠COB、∠AOD的平分線,且∠COB:∠AOD=4:9.

(1)寫出圖中∠BOD的余角和補(bǔ)角;

(2)求∠AOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點(diǎn)落在D點(diǎn)的位置,且AD交y軸于點(diǎn)E,那么點(diǎn)D的坐標(biāo)為()
A.(﹣ ,
B.(﹣
C.(﹣ ,
D.(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為

(問題情境)

在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動點(diǎn)從點(diǎn)出發(fā)沿數(shù)軸正方向運(yùn)動,同時,動點(diǎn)也從點(diǎn)出發(fā)沿數(shù)軸負(fù)方向運(yùn)動,已知運(yùn)動到4秒鐘時,、兩點(diǎn)相遇,且動點(diǎn)、運(yùn)動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運(yùn)用)

1)點(diǎn)的運(yùn)動速度為______單位長度/秒,點(diǎn)的運(yùn)動速度為______單位長度/秒;

2)當(dāng)時,求運(yùn)動時間;

3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動,但運(yùn)動的方向不限,我們發(fā)現(xiàn):隨著動點(diǎn)、的運(yùn)動,線段的中點(diǎn)也隨著運(yùn)動.問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動時間,并直接寫出點(diǎn)的運(yùn)動方向和運(yùn)動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1
(2)琪琪從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

同步練習(xí)冊答案