【題目】圖1是我校聞瀾閣前樓梯原設(shè)計(jì)稿的側(cè)面圖,,,樓梯的坡比為1:,為了增加樓梯的舒適度,將其改造成如圖2,測(cè)量得,為的中點(diǎn),過點(diǎn)分別作交的角平分線于點(diǎn),交于點(diǎn),其中和為樓梯,為平地,則平地的長(zhǎng)度為_________
【答案】
【解析】
首先根據(jù)坡比求出AE和BE,然后由勾股定理得出BC,進(jìn)而得出AD,再由角平分線、中點(diǎn)以及平行的性質(zhì)得出AH=HP,DP=HP,判定△MDP≌△BMN,得出MN=DP,即可得解.
延長(zhǎng)BN交AD于H,作AE⊥BC,交BC于E,連接AM,如圖所示:
∵樓梯的坡比為1:,
∴AB=9,AE=CD=3,BE=
∴
∵
∴AD=CE=BC-BE=
∵為的中點(diǎn)
∴BM=MD=AB=9
∵交的角平分線于點(diǎn)
∴BH垂直平分AM,∠MDP=∠BMN
∵
∴AH=HP,∠DMP=∠MBN
∴△MDP≌△BMN(ASA)
∴MN=DP
∵,為的中點(diǎn)
∴DP=HP
∴
∴
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了做好“營(yíng)造清潔生活環(huán)境”活動(dòng)的宣傳,對(duì)本校學(xué)生進(jìn)行了有關(guān)知識(shí)的測(cè)試,測(cè)試后隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī),按“優(yōu)秀、良好、及格、不及格”四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì)分析,并將分析結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)求抽取的學(xué)生總?cè)藬?shù);
(2)抽取的學(xué)生中,等級(jí)為“優(yōu)秀”的人數(shù)為 人;扇形統(tǒng)計(jì)圖中等級(jí)為“不合格”部分的圓心角的度數(shù)為 °;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校有學(xué)生3500人,請(qǐng)根據(jù)以上統(tǒng)計(jì)結(jié)果估計(jì)成績(jī)等級(jí)為“優(yōu)秀”和“良好”的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,1)關(guān)于直線y =kx的對(duì)稱點(diǎn)恰好落在x軸的正半軸上,則k的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BC上一點(diǎn),連接DE,點(diǎn)F在邊CD上,且AF⊥CD交DE于點(diǎn)G,連接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的長(zhǎng).
(2)求證:AD=CG+DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?
(2)該文具店購入這兩種筆記本共60本,花費(fèi)不超過296元,則購買甲種筆記本多少本時(shí)文具店獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增加學(xué)校綠化,學(xué)校計(jì)劃建造一塊長(zhǎng)為的正方形花壇,分別取四邊中點(diǎn),構(gòu)成四邊形,并計(jì)劃用“兩花一草”來裝飾,四邊形部分使用甲種花,在正方形四個(gè)角落構(gòu)造4個(gè)全等的矩形區(qū)域種植乙種花,剩余部分種草坪,圖紙?jiān)O(shè)計(jì)如下.
(1)經(jīng)了解,種植甲種花50元/,乙種花80元/,草坪10元/,設(shè)一個(gè)矩形的面積為,裝飾總費(fèi)用為元,求關(guān)于的函數(shù)關(guān)系式.
(2)當(dāng)裝飾費(fèi)用為74880元時(shí),則一個(gè)矩形區(qū)域的長(zhǎng)和寬分別為多少?
(3)為了縮減開支,甲區(qū)域用單價(jià)為40元/的花,乙區(qū)域用單價(jià)為元/ (,且為10的倍數(shù))的花,草坪?jiǎn)蝺r(jià)不變,最后裝飾費(fèi)只用了55000元,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB的中點(diǎn),AC<BC.
(1)試用無刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線ED平分ABC的周長(zhǎng);(不要求寫作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請(qǐng)?zhí)骄?/span>AC與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解
如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過點(diǎn),,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.
(2)證明命題
小東認(rèn)為:可以通過“若,則”的思路證明上述命題.
小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.
請(qǐng)你選擇一種方法證明(1)中的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com