如圖, 已知拋物線(xiàn)與y軸相交于C,與x軸相交于A、B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-1)。
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E是線(xiàn)段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作DE⊥x軸于點(diǎn)D,連結(jié)DC,當(dāng)△DCE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)在直線(xiàn)BC上是否存在一點(diǎn)P,使△ACP為等腰三角形,若存在,求點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由。

(1) y=x2-x-1.(2) D(1,0);(3) P1(2.5,-3.5)、P2(1,-2)、P3,--1),P4(--1).

解析試題分析:(1)由于拋物線(xiàn)的解析式中只有兩個(gè)待定系數(shù),因此只需將A、C兩點(diǎn)的坐標(biāo)代入拋物線(xiàn)中即可求出二次函數(shù)的解析式.
(2)根據(jù)A、C的坐標(biāo),易求得直線(xiàn)AC的解析式,可設(shè)D點(diǎn)的橫坐標(biāo),根據(jù)直線(xiàn)AC的解析式可表示出E點(diǎn)的縱坐標(biāo),即可得到DE的長(zhǎng),以DE為底,D點(diǎn)橫坐標(biāo)為高即可得到△CDE的面積,從而得到關(guān)于△CDE的面積與D點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出△CDE的面積最大值及對(duì)應(yīng)的D點(diǎn)坐標(biāo).
(3)根據(jù)拋物線(xiàn)的解析式,可求出B點(diǎn)的坐標(biāo),進(jìn)而能得到直線(xiàn)BC的解析式,設(shè)出點(diǎn)P的橫坐標(biāo),根據(jù)直線(xiàn)BC的解析式表示出P點(diǎn)的縱坐標(biāo),然后利用坐標(biāo)系兩點(diǎn)間的距離公式分別表示出△ACP三邊的長(zhǎng),從而根據(jù):①AP=CP、②AC=AP、③CP=AC,三種不同等量關(guān)系求出符合條件的P點(diǎn)坐標(biāo).
(1)由于拋物線(xiàn)經(jīng)過(guò)A(2,0),C(0,-1),
則有:,解得;
∴拋物線(xiàn)的解析式為:y=x2-x-1.
(2)∵A(2,0),C(0,-1),
∴直線(xiàn)AC:y=x-1;
設(shè)D(x,0),則E(x,x-1),
故DE=0-(x-1)=1-x;
∴△DCE的面積:S=DE×|xD|=×(1-x)×x=-x2+x=-(x-1)2+
因此當(dāng)x=1,
即D(1,0)時(shí),△DCE的面積最大,且最大值為
(3)由(1)的拋物線(xiàn)解析式易知:B(-1,0),
可求得直線(xiàn)BC的解析式為:y=-x-1;
設(shè)P(x,-x-1),因?yàn)锳(2,0),C(0,-1),則有:

AP2=(x-2)2+(-x-1)2=2x2-2x+5,
AC2=5,CP2=x2+(-x-1+1)2=2x2;
當(dāng)AP=CP時(shí),AP2=CP2,有:
2x2-2x+5=2x2,解得x=2.5,
∴P1(2.5,-3.5);
②當(dāng)AP=AC時(shí),AP2=AC2,有:
2x2-2x+5=5,解得x=0(舍去),x=1,
∴P2(1,-2);
③當(dāng)CP=AC時(shí),CP2=AC2,有:
2x2=5,解得x=±,
∴P3,--1),P4(-,-1);
綜上所述,存在符合條件的P點(diǎn),且P點(diǎn)坐標(biāo)為:P1(2.5,-3.5)、P2(1,-2)、P3,--1),P4(--1).
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線(xiàn)段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線(xiàn)段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為   ,求此時(shí)線(xiàn)段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為   ,此時(shí)AE與BF的數(shù)量關(guān)系是   ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過(guò)多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫(xiě)出其邊長(zhǎng);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某賓館有30個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天120元時(shí),房間會(huì)全部住滿(mǎn).當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于210元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線(xiàn)AB:與拋物線(xiàn)交于A、B兩點(diǎn),
(1)直線(xiàn)AB總經(jīng)過(guò)一個(gè)定點(diǎn)C,請(qǐng)直接寫(xiě)出點(diǎn)C坐標(biāo);
(2)當(dāng)時(shí),在直線(xiàn)AB下方的拋物線(xiàn)上求點(diǎn)P,使△ABP的面積等于5;
(3)若在拋物線(xiàn)上存在定點(diǎn)D使∠ADB=90°,求點(diǎn)D到直線(xiàn)AB的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)弦AC的垂直平分線(xiàn)交OC于D,連接AD并延長(zhǎng)交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過(guò)點(diǎn)M的直線(xiàn),使該直線(xiàn)與(1)中所得的拋物線(xiàn)的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線(xiàn)對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)y=(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說(shuō)明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過(guò)A,B,C三點(diǎn)的拋物線(xiàn)上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的?若存在,試求出所有滿(mǎn)足條件的M點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(11分)如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(-1,0)、B(4,5)兩點(diǎn),過(guò)點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線(xiàn)的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線(xiàn)上的一個(gè)點(diǎn),直線(xiàn)MN平行于y軸交直線(xiàn)AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,□ABCD中,對(duì)角線(xiàn)BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線(xiàn)AD的同側(cè),點(diǎn)F與點(diǎn)D重合,GF與AD在同一直線(xiàn)上.△EFG從點(diǎn)D出發(fā)以每秒1個(gè)單位的速度沿射線(xiàn)DA方向平移,當(dāng)點(diǎn)G到點(diǎn)A時(shí)停止運(yùn)動(dòng);同時(shí)點(diǎn)P也從點(diǎn)A出發(fā),以每秒3個(gè)單位的速度沿折線(xiàn)AD→DC方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)求的長(zhǎng)度;
(2)在平移的過(guò)程中,記相互重疊的面積為,請(qǐng)直接寫(xiě)出面積與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(3)如圖2,在運(yùn)動(dòng)的過(guò)程中,若線(xiàn)段與線(xiàn)段交于點(diǎn),連接.是否存在這樣的時(shí)間,使得為等腰三角形?若存在,求出對(duì)應(yīng)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)y=x2-2x+c的頂點(diǎn)A在直線(xiàn)l:y=x-5上.

(1)求拋物線(xiàn)頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線(xiàn)與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案