【題目】如圖,在ABC中,DAB上的一點,且AD2BD,EBC的中點,CD、AE相交于點F.若EFC的面積為1,則ABC的面積為_____

【答案】10

【解析】

連接BF,如圖,根據(jù)三角形面積公式,利用AE為中線得SABESACE,SBEFSCEF1,所以SABFSACF,設BDF的面積為S,則ADF的面積為2S,ACF的面積為3S,利用SADC2SBCD得到2S+3S2S+1+1),然后求得S后計算ABC的面積即可.

解:如圖,連接BF,

AE為中線,

SABESACE,SBEFSCEF1

SABFSACF,

BDF的面積為S,則ADF的面積為2S,ACF的面積為3S,

SADC2SBCD

∴2S+3S2S+1+1),

解得S

ABC的面積=2S+3S+S+1+16S+2+210

故答案為:10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】校園手機現(xiàn)象已經(jīng)受到社會的廣泛關注.某校的一個興趣小組對“是否贊成中學生帶手機進校園”的問題在該校校園內(nèi)進行了隨機調(diào)查.并將調(diào)查數(shù)據(jù)作出如下整理(未完整)

1)本次調(diào)查共調(diào)查了   人(直接填空);

2)請把整理的不完整圖表補充完整;

3)若該校有3000名學生,請您估計該校持“反對”態(tài)度的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃開發(fā)、兩種戶型樓盤,設戶型套,戶型套,且兩種戶型的函數(shù)關系滿足,經(jīng)市場調(diào)研,每套戶型的成本價和預售價如下表所示:

樓盤戶型

成本價(萬元/套)

60

80

預售價(萬元/套)

80

120

若公司最多投入開發(fā)資金為14000萬元,所獲利潤為萬元,

1)求的函效關系式和自變量的取值范圍

2)售完這批樓盤,公司所獲得的最大利潤是多少?

3)公司在實際銷售過程中,其他條件不變,戶型每套銷售價格提高)萬元,且限定戶型最多開發(fā)120套,則公司如何建房,利潤最大?(注:利潤=售價-成本.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點D,E為⊙O上的兩個點,延長AD至C,使∠CBD=∠BED.

(1)求證:BC是⊙O的切線;
(2)當點E為弧AD的中點且∠BED=30°時,⊙O半徑為2,求DF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,給出如下定義:
對于⊙C及⊙C外一點P,M,N是⊙C上兩點,當∠MPN最大時,稱∠MPN為點P關于⊙C的“視角”.

(1)如圖,⊙O的半徑為1,
①已知點A(0,2),畫出點A關于⊙O的“視角”;若點P在直線x=2上,則點P關于⊙O的最大“視角”的度數(shù) ;
(2)在第一象限內(nèi)有一點B(m,m),點B關于⊙O的“視角”為60°,求點B的坐標.
(3)若點P在直線y=﹣ x+2上,且點P關于⊙O的“視角”大于60°,求點P的橫坐標xP的取值范圍.
(4)⊙C的圓心在x軸上,半徑為1,點E的坐標為(0,1),點F的坐標為(0,﹣1),若線段EF上所有的點關于⊙C的“視角”都小于120°,直接寫出點C的橫坐標xC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為r的圓形紙片在邊長為a( )的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,ABC的頂點都在正方形網(wǎng)格的格點上.

1)將ABC經(jīng)平移后得到ABC,點A的對應點是點A.畫出平移后所得的ABC;

2)連接AA、CC,則四邊形AACC的面積為 ________

3)若連接AA′,BB′,則這兩條線段之間的關系是   

4ABC的高CD所在直線必經(jīng)過圖中的一個格點點P,在圖中標出點P

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程 有兩個不相等的實數(shù)根,
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求n2﹣4n的最大值和最小值.

查看答案和解析>>

同步練習冊答案