【題目】如圖,在矩形中,,點在上,且,連接,將矩形沿直線翻折,點恰好落在上的點處,則__________.
【答案】16
【解析】
由題意易證得△FBC≌△DCE(AAS),BC=AD,FB=AB=CD=30,然后設(shè)FC=x,在Rt△FBC中,由勾股定理可得BC2=FB2+FC2,即可得方程,解方程即可求得答案.
解:∵四邊形ABCD是矩形,
∴AB=CD=30,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠FCB,
由折疊的性質(zhì),得:FB=AB=30,∠BFE=∠A=90°,
∴FB=CD,∠BFC=∠D=90°,
在△FBC和△DCE中,
,
∴△FBC≌△DCE(AAS),
∴FC=DE,
設(shè)FC=x,則BC=AD=DE+AE=x+18
在Rt△FBC中,BC2=FB2+FC2,
即(x+18)2=x2+302,
解得:x=16,
∴AF=16.
故答案為:16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場部分平面圖如圖所示,C,E,A在同一直線上,D、E、B在同一直線上,∠BAE=30°,∠C=90°,∠ABE=90°,測得A處與C處的距離為100米,B處與D處的距離為80米,求海洋球D處到過山車C處的距離.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是邊長為1的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則MP+PN的最小值是( 。
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,E為BC上一點,把△CDE沿DE折疊,使點C落在AB邊上的F處,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)交x軸正半軸于點A,直線y=2x經(jīng)過拋物線的頂點M.已知該拋物線的對稱軸為直線x=2,交x軸于點B.
(1)求M點的坐標(biāo)及a,b的值;
(2)P是第一象限內(nèi)拋物線上的一點,且在對稱軸的右側(cè),連接OP,BP.設(shè)點P的橫坐標(biāo)為m,△OBP的面積為S,當(dāng)m為多少時,s=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程ax2﹣3x﹣1=0的兩個不相等實數(shù)根均大于﹣1且小于0,則a的取值范圍為( 。
A. a>0B. ﹣2<a<﹣1C. ﹣<a<﹣1D. ﹣<a<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,兩塊直角三角紙板(Rt△ABC和Rt△BDE)按如圖所示的方式擺放(重合點為B),其中∠BDE=∠ACB=90°,∠ABC=30°,BD=DE=AC=2.將△BDE繞著點B順時針旋轉(zhuǎn).
(1)當(dāng)點D在BC上時,求CD的長;
(2)當(dāng)△BDE旋轉(zhuǎn)到A,D,E三點共線時,畫出相應(yīng)的草圖并求△CDE的面積
(3)如圖2,連接CD,點G是CD的中點,連接AG,求AG的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC.
(1)請用圓規(guī)和直尺作△ABC的內(nèi)切圓(要求保留作圖痕跡,不必寫作法和證明);
(2)若等邊△ABC邊長為2,求△ABC的內(nèi)切圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長AE交BD的延長線于點M,過點D作⊙O的切線交AB的延長線于點C.
(1)若OACD,求陰影部分的面積;
(2)求證:DEDM.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com