【題目】已知點(diǎn)P(2,﹣3)在拋物線L:y=ax2﹣2ax+a+k(a,k均為常數(shù)且a≠0)上,L交y軸于點(diǎn)C,連接CP.
(1)用a表示k,并求L的對稱軸;
(2)當(dāng)L經(jīng)過點(diǎn)(4,﹣7)時(shí),求此時(shí)L的表達(dá)式及其頂點(diǎn)坐標(biāo);
(3)橫,縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).如圖,當(dāng)a<0時(shí),若L在點(diǎn)C,P之間的部分與線段CP所圍成的區(qū)域內(nèi)(不含邊界)恰有5個(gè)整點(diǎn),求a的取值范圍;
(4)點(diǎn)M(x1,y1),N(x2,y2)是L上的兩點(diǎn),若t≤x1≤t+1,當(dāng)x2≥3時(shí),均有y1≥y2,直接寫出t的取值范圍.
【答案】(1)k=﹣3﹣a,x=1;(2)y=﹣x2+x﹣3,頂點(diǎn)坐標(biāo)為(1,﹣);(3)﹣6≤a<﹣5;(4)﹣1≤t≤2
【解析】
(1)點(diǎn)代入拋物線上,則;拋物線的對稱軸為直線,即;
(2)點(diǎn),代入拋物線上,則有,解得,,即可求解;
(3)頂點(diǎn)坐標(biāo),時(shí)在指定區(qū)域內(nèi)有5個(gè)整數(shù)點(diǎn);
(4)當(dāng)時(shí),或;當(dāng)時(shí),或.
解:(1)∵點(diǎn)P(2,﹣3)在拋物線L:y=ax2﹣2ax+a+k(a,k均為常數(shù)且a≠0)上,
∴﹣3=4a﹣4a+a+k,
∴k=﹣3﹣a;
拋物線的對稱軸為直線,即;
(2)∵L經(jīng)過點(diǎn)(4,﹣7),
∴16a﹣8a+a+k=﹣7,
∵k=﹣3﹣a,
,解得,,
∴L的表達(dá)式為y=﹣x2+x﹣3;
,
∴頂點(diǎn)坐標(biāo)為(1,﹣);
(3)頂點(diǎn)坐標(biāo)(1,﹣a﹣3),
∵在點(diǎn)C,P之間的部分與線段CP所圍成的區(qū)域內(nèi)(不含邊界)恰有5個(gè)整點(diǎn),
∴2<﹣a﹣3≤3,
∴﹣6≤a<﹣5;
(4)當(dāng)a>0時(shí),t≥3或t+1≤﹣1,
∴t≥3或t≤﹣2;
代入檢驗(yàn),此時(shí)有不符合條件的點(diǎn)使y1≥y2,
故此情況舍去;
當(dāng)a<0時(shí),t+1≤3且t≥﹣1,
∴﹣1≤t≤2;
綜上所述,﹣1≤t≤2;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C為⊙O上異于A、B的一點(diǎn),過C點(diǎn)的切線與BA的延長線交于D點(diǎn),E為CD上一點(diǎn),連接EA并延長交⊙O于H,F為EH上一點(diǎn),且EF=CE,CF交延長線交⊙O于G.
(1)求證:弧AG=弧GH;
(2)若E為DC的中點(diǎn),sim∠CDO=,AH=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在滑草過程中,小明發(fā)現(xiàn)滑道兩邊形如兩條雙曲線,如圖,點(diǎn)A1,A2,A3…在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)B1,B2,B3…反比例函數(shù)y=(k>1,x>0)的圖象上,A1B1∥A2B2…∥y軸,已知點(diǎn)A1,A2…的橫坐標(biāo)分別為1,2,…,令四邊形A1B1B2A2、A2B2B3A3、…的面積分別為S1、S2、…
(1)用含k的代數(shù)式表示S1=_____.
(2)若S19=39,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:若拋物線的頂點(diǎn)在坐標(biāo)軸上,則稱該拋物線為“數(shù)軸函數(shù)”例如拋物線y=x2和y=(x-1)2都是“數(shù)軸函數(shù)”.
(1)拋物線y=x2-4x+4和拋物線y=x2-6x是“數(shù)軸函數(shù)“嗎?請說明理由;
(2)若拋物線y=2x2+4mx+m2+16是“數(shù)軸函數(shù)”,求該拋物線的表達(dá)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)若a+b=10,則ab的最大值是多少?
(探究)
探究一:當(dāng)a﹣b=0時(shí),求ab值.
顯然此時(shí),a=b=5,則ab=5×5=25
探究二:當(dāng)a﹣b=±1時(shí),求ab值.
①a﹣b=1,則a=b+1,
由已知得b+1+b=10
解得 b=,
a=b+l=+1=
則ab==
②a﹣b=﹣1,即b﹣a=1,由①可得,b= ,a=
則ab==.
探究三:當(dāng)a﹣b=±2時(shí),求ab值(仿照上述方法,寫出探究過程).
探究四:完成下表:
a﹣b | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
ab | … |
|
| 25 |
|
| … |
(結(jié)論)若a+b=10,則ab的最大值是 (觀察上面表格,直接寫出結(jié)果).
(拓展)若a+b=m,則ab的最大值是 .
(應(yīng)用)用一根長為12m的鐵絲圍成一個(gè)長方形,這個(gè)長方形面積的最大值是 m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.
已知:線段.
求作:以為斜邊的一個(gè)等腰直角三角形.
作法:如圖,
(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧相交于,兩點(diǎn);
(2)作直線,交于點(diǎn);
(3)以為圓心,的長為半徑作圓,交直線于點(diǎn);
(4)連接,.
則即為所求作的三角形.
請回答:在上面的作圖過程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,則下列選項(xiàng)中,滿足A、B、C三點(diǎn)位置關(guān)系的數(shù)軸為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),直線:交軸于點(diǎn),交直線點(diǎn).
(1)求直線的函數(shù)解析式;
(2)過動(dòng)點(diǎn)作軸的垂線與直線、分別交于、兩點(diǎn),且.
①求的取值范圍;
②若,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計(jì)表如下:
成績x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績在這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測試,估計(jì)成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com