【題目】如圖,已知AB為⊙O的直徑,C為⊙O上異于AB的一點(diǎn),過C點(diǎn)的切線與BA的延長(zhǎng)線交于D點(diǎn),ECD上一點(diǎn),連接EA并延長(zhǎng)交⊙OH,FEH上一點(diǎn),且EFCE,CF交延長(zhǎng)線交⊙OG

1)求證:弧AG=弧GH;

2)若EDC的中點(diǎn),simCDO,AH2,求⊙O的半徑.

【答案】1)見解析;(2)⊙O的半徑為3

【解析】

1)連接AC,BC,根據(jù)AB為⊙O的直徑,可得∠B+CAO90°,根據(jù)CD為⊙O的切線,可得∠ECA+ACO90°,再根據(jù)等邊對(duì)等角和角的和差關(guān)系可得∠ACG=∠GAF=∠GCH,即可得證

2)過點(diǎn)EENDA,連接OCOG,OGAH交于點(diǎn)M,設(shè)COx,根據(jù)勾股定理、三角函數(shù)和相似三角形的性質(zhì)列式求出x的值即可.

1)證明:如圖1,連接AC,BC,

AB為⊙O的直徑,

∴∠ACB90°

∴∠B+CAO90°,

CD為⊙O的切線,

∴∠ECA+ACO90°,

OCOA,

∴∠ACO=∠OAC,

∴∠ECA=∠B,

EFCE,

∴∠ECF=∠EFC,

∵∠ECF=∠ECA+ACG,∠EFC=∠GAF+G

∵∠ECA=∠B=∠G,

∴∠ACG=∠GAF=∠GCH,

2)解:過點(diǎn)EENDA,連接OC,OG,OGAH交于點(diǎn)M,

,

OGAH,AMMH

CD是⊙O的切線,

∴∠DCO90°

設(shè)COx,

sinCDO,

DO3x

,

EDC的中點(diǎn),

CEDE,

,

,

,

∵∠EAN=∠OAM,∠ENA=∠OMA,

∴△AEN∽△AOM

,

,

OM,

RtAOM中,OA

∴⊙O的半徑為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,AC=2BC=3.點(diǎn)DAC的中點(diǎn),聯(lián)結(jié)BD,過點(diǎn)CCGBD,交AC的垂線AG于點(diǎn)GGC分別交BA、BD于點(diǎn)F、E

1)求GA的長(zhǎng);

2)求△AFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,點(diǎn)軸上,且

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)的橫坐標(biāo)為

①當(dāng)時(shí),求四邊形的面積的函數(shù)關(guān)系式,并求出的最大值;

②點(diǎn)在直線上,若以為邊,點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左),與軸交于點(diǎn),連接,點(diǎn)為二次函數(shù)圖象上的動(dòng)點(diǎn).

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點(diǎn),使得,求點(diǎn)的坐標(biāo);

3)若為對(duì)稱軸右側(cè)拋物線上的動(dòng)點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn),判斷的值是否為定值,若是,求出定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4NBC上一點(diǎn)且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長(zhǎng)為4,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求的最小值.

3)推廣運(yùn)用:

如圖3,已知菱形ABCD的邊長(zhǎng)為4,∠B60°,圓B的半徑為2,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)飛人蘇炳添以647獲得2019年國(guó)際田聯(lián)伯明翰室內(nèi)賽男子60米冠軍,蘇炳添奪冠掀起跑步熱潮某校為了解該校八年級(jí)男生的短跑水平,全校八年級(jí)男生中隨機(jī)抽取了部分男生,對(duì)他們的短跑水平進(jìn)行測(cè)試,并將測(cè)試成績(jī)(滿分10)繪制成如下不完整的統(tǒng)計(jì)圖表:

組別

成績(jī)/

人數(shù)/

A

5

36

B

6

32

C

7

15

D

8

8

E

9

5

F

10

m

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)填空:m_____,n_____;

(2)所抽取的八年級(jí)男生短跑成績(jī)的眾數(shù)是_____分,扇形統(tǒng)計(jì)圖中E組的扇形圓心角的度數(shù)為____°

(3)求所抽取的八年級(jí)男生短跑的平均成績(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)DEG上運(yùn)動(dòng),則△CDF周長(zhǎng)的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).

1)畫出關(guān)于軸的對(duì)稱圖形,并寫出點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo);

2)若點(diǎn)軸上,連接,則的最小值是

3)若直線軸,與線段、分別交于點(diǎn)、(點(diǎn)不與點(diǎn)重合),若將沿直線翻折,點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),當(dāng)點(diǎn)落在的內(nèi)部(包含邊界)時(shí),點(diǎn)的橫坐標(biāo)的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P2,﹣3)在拋物線Lyax22ax+a+ka,k均為常數(shù)且a0)上,Ly軸于點(diǎn)C,連接CP

1)用a表示k,并求L的對(duì)稱軸;

2)當(dāng)L經(jīng)過點(diǎn)(4,﹣7)時(shí),求此時(shí)L的表達(dá)式及其頂點(diǎn)坐標(biāo);

3)橫,縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).如圖,當(dāng)a0時(shí),若L在點(diǎn)C,P之間的部分與線段CP所圍成的區(qū)域內(nèi)(不含邊界)恰有5個(gè)整點(diǎn),求a的取值范圍;

4)點(diǎn)Mx1y1),Nx2y2)是L上的兩點(diǎn),若tx1t+1,當(dāng)x23時(shí),均有y1y2,直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案