20.在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)三角形ABC(即三角形的頂點(diǎn)都在格點(diǎn)是),請(qǐng)?jiān)趫D中作出△ABC饒點(diǎn)B順時(shí)針方向旋轉(zhuǎn)90°后得到的△A1BC1

分析 分別作出點(diǎn)A、C繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)90°后的點(diǎn)A1、C1,然后順次連接即可.

解答 解:如圖所示:

點(diǎn)評(píng) 本題考查了根據(jù)旋轉(zhuǎn)變換作圖.熟練掌握網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在Rt△ABC中,∠A=90°,∠B=30°,AB=6,求BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.【試題背景】
已知:l∥m∥n∥k,平行線l與m、m與n、n與k之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l、m、n、k這四條平行線上的四邊形稱為“格線四邊形”.
【探究1】
(1)如圖1,正方形ABCD為“格線四邊形”,BE⊥l于點(diǎn)E,BE的反向延長(zhǎng)線交直線k于點(diǎn)F,求正方形ABCD的邊長(zhǎng).
【探究2】
(2)矩形ABCD為“格線四邊形”,其長(zhǎng):寬=2:1,則矩形ABCD的寬為$\frac{\sqrt{13}}{2}$或$\frac{\sqrt{37}}{2}$或.(直接寫出結(jié)果即可)
【探究3】
如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AE⊥k于點(diǎn)E,∠AFD=90°,直線DF分別交直線l、k于點(diǎn)G、點(diǎn)M.求證:EC=DF.
【拓展】
(4)如圖3,l∥k,等邊△ABC的頂點(diǎn)A、B分別落在直線l、k上,AB⊥k于點(diǎn)B,且AB=4,∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M、點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動(dòng)點(diǎn),且始終保持AD=AE,DH⊥l于點(diǎn)H.
猜想:DH在什么范圍內(nèi),BC∥DE?并說明此時(shí)BC∥DE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC,交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接BD,BD交AC于點(diǎn)F,延長(zhǎng)AC到點(diǎn)P,連接PB.
(1)若PF=PB,求證:PB是⊙O的切線;
(2)如果AB=10,cos∠ABC=$\frac{3}{5}$,求CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.甲隊(duì)有工人96人,乙隊(duì)有工人72人,如果要求乙隊(duì)的人數(shù)是甲隊(duì)人數(shù)的$\frac{1}{3}$,應(yīng)從乙隊(duì)調(diào)多少人去甲隊(duì),如果設(shè)應(yīng)從乙隊(duì)調(diào)x人到甲隊(duì),列出的方程正確的是(  )
A.96+x=$\frac{1}{3}$(72-x)B.$\frac{1}{3}$(96-x)=72-xC.$\frac{1}{3}$(96+x)=72-xD.$\frac{1}{3}$×96+x=72-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.某廠生產(chǎn)A,B兩種產(chǎn)品,其單價(jià)隨市場(chǎng)變化而做相應(yīng)調(diào)整,營(yíng)銷人員根據(jù)前四次單價(jià)變化的情況,繪制了如下統(tǒng)計(jì)表:
A,B產(chǎn)品單價(jià)變化統(tǒng)計(jì)表
  第一次第二次 第三次 第四次
 A產(chǎn)品單價(jià)(元/件) 6 5.2 6.5 5.9
 B產(chǎn)品單價(jià)(元/件) 3.5 4 3 3.5
并求得了A產(chǎn)品四次單價(jià)的平均數(shù)和方差:
$\overline{{x}_{A}}$=5.9,sA2=$\frac{1}{4}$[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2+(5.9-5.9)2]=$\frac{43}{200}$
(1)B產(chǎn)品第四次的單價(jià)比第二次的單價(jià)減少了12.5%;
(2)A產(chǎn)品四次單價(jià)的中位數(shù)是5.95;B產(chǎn)品四次單價(jià)的眾數(shù)是3.5;
(3)求B產(chǎn)品四次單價(jià)的方差,并比較哪種產(chǎn)品的單價(jià)波動(dòng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,CD是⊙O的直徑,且CD=2cm,點(diǎn)P為CD的延長(zhǎng)線上一點(diǎn),過點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)分別為A、B.
(1)連接AC,若∠APO=30°,試證明△ACP是等腰三角形;
(2)填空:
①當(dāng)$\widehat{ADB}$的長(zhǎng)為$\frac{2π}{3}$或$\frac{4π}{3}$cm時(shí),四邊形AOBD是菱形;
②當(dāng)DP=($\sqrt{2}$-1)cm時(shí),四邊形AOBP是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,正方體表面上畫有一條黑色線條,則其俯視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.下列各數(shù):$\frac{22}{7}$,$\root{3}{9}$,5.12,-$\root{3}{27}$,0,$\sqrt{0.25}$,3.1415926,$\frac{π}{2}$,-$\frac{\sqrt{3}}{2}$,2.181181118…(兩個(gè)8之間1的個(gè)數(shù)逐次多1).其中是無理數(shù)的有4個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案