【題目】三角形ABC三點的坐標為A(-2,1),B(1,2),C(k,h)
(1)在直角坐標系上畫出點A,B.
(2)若點C(-2,-1)時,求三角形ABC的面積.
(3)若點C在y軸上,當三角形ABC的面積為6時,求點C的坐標.
【答案】(1)見詳解;(2)S△ABC=3;(3)(0,)或(0,)
【解析】
(1)根據(jù)A,B的坐標,直接在圖中表示即可;
(2)根據(jù)A,B,C的坐標直接計算即可;
(3)設(shè)C的坐標為(0,y),分當y>1時和當y<1時兩種情況討論即可.
(1)如圖所示:
;
(2)S△ABC=×2×3=3;
(3)設(shè)C的坐標為(0,y),
當y>1時,S△ABC=3×(y-1)-×1×3-×1×(y-2)-×2×(y-1)=6,
解得:y=,
∴C的坐標為(0,);
當y<1時,S△ABC=3×(-y+2)-×1×(-y+2)-×1×3-×2×(-y+1)=6,
解得:y=,
∴C的坐標為(0,);
綜上,點C的坐標為(0,)或(0,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過點( ,8),直線y=﹣x+b經(jīng)過該反比例函數(shù)圖象上的點Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點,與反比例函數(shù)圖象的另一個交點為P,連接0P、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園手機現(xiàn)象已經(jīng)受到社會的廣泛關(guān)注.某校的一個興趣小組對“是否贊成中學(xué)生帶手機進校園”的問題在該校校園內(nèi)進行了隨機調(diào)查.并將調(diào)查數(shù)據(jù)作出如下整理(未完整)
(1)本次調(diào)查共調(diào)查了 人(直接填空);
(2)請把整理的不完整圖表補充完整;
(3)若該校有3000名學(xué)生,請您估計該校持“反對”態(tài)度的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:
(1)的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、、分別是、、的對應(yīng)點,試畫出;
(2)連接,則線段 的位置關(guān)系為____,線段的數(shù)量關(guān)系為___;
(3)平移過程中,線段掃過部分的面積_____.(平方單位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關(guān)于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃開發(fā)、兩種戶型樓盤,設(shè)戶型套,戶型套,且兩種戶型的函數(shù)關(guān)系滿足,經(jīng)市場調(diào)研,每套戶型的成本價和預(yù)售價如下表所示:
樓盤戶型 | ||
成本價(萬元/套) | 60 | 80 |
預(yù)售價(萬元/套) | 80 | 120 |
若公司最多投入開發(fā)資金為14000萬元,所獲利潤為萬元,
(1)求與的函效關(guān)系式和自變量的取值范圍
(2)售完這批樓盤,公司所獲得的最大利潤是多少?
(3)公司在實際銷售過程中,其他條件不變,戶型每套銷售價格提高()萬元,且限定戶型最多開發(fā)120套,則公司如何建房,利潤最大?(注:利潤=售價-成本.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的頂點都在正方形網(wǎng)格的格點上.
(1)將△ABC經(jīng)平移后得到△A′B′C′,點A的對應(yīng)點是點A′.畫出平移后所得的△A′B′C′;
(2)連接AA′、CC′,則四邊形AA′C′C的面積為 ________.
(3)若連接AA′,BB′,則這兩條線段之間的關(guān)系是 ;
(4)△ABC的高CD所在直線必經(jīng)過圖中的一個格點點P,在圖中標出點P.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com